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Figure 1: We present Route2Vec, a system that encodes variable-length sequences of route context, such as road type, traffic,
and weather, into fixed-size semantic embeddings. The learned embeddings preserve key route-specific features, and similar
sets of route context are encoded to similar embeddings. This allows for efficient comparison of route context across different
scenarios using simple metrics like Euclidean distance. Thus, Route2Vec builds the basis for enabling context-aware interactions
in mobile platforms such as cars.

Abstract

Understanding how vehicle occupants experience their journey is
key to designing adaptive in-car systems. The environments they
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encounter, ranging from road types and traffic patterns to weather
conditions, shape their mental and emotional states during a ride.
Yet, leveraging this contextual information remains a challenge due
to its heterogeneous nature, comprising diverse data types, such
as categorical, numerical, and boolean values of various scales. We
introduce Route2Vec, an attention-based framework that encodes
variable-length sequences of route context into compact, seman-
tically meaningful embeddings using a self-supervised learning
pipeline. These fixed-size representations allow for efficient compar-
isons between different driving situations using common similarity
metrics such as Euclidean distance. Through linear probing and
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qualitative analysis of the embedding space, we show that Route2Vec
reliably captures salient, route-specific characteristics. Route2Vec
simplifies context-aware in-vehicle interaction by enabling design-
ers to rapidly prototype intelligent in-vehicle interfaces. We make
our trained models and code! publicly available to foster research
in this area.
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1 Introduction

Vehicles have evolved from simple transportation tools into sophis-
ticated platforms that integrate advanced technologies to deliver
rich and personalized user experiences [27]. Consequently, they
offer an unprecedented range of functionalities, enabling drivers
and passengers to adjust settings such as lighting, scent, curated
soundscapes, and entertainment with just a few taps. At the same
time, prior studies have shown that contextual factors that drivers
and passengers are exposed to while driving, including road types,
traffic density, and weather conditions, are largely influential on dri-
vers’ experiences during the ride. Among other, they correlate with
drivers’ emotional states [5], influence their interruptibility [28], or
determine their route preferences [3]. For example, driving along a
highway segment during heavy rain at night entails a vastly dif-
ferent context than a city road on a sunny afternoon, requiring
systems to adapt accordingly. We refer to these variables as driving
context in this work. As vehicles become more adaptive, leveraging
this driving context for personalization is a promising direction.
However, doing so introduces significant technical challenges. Con-
textual data is inherently heterogeneous, comprising categorical,
numerical, and boolean values of diverse scales and distributions.
Thus, traditional similarity metrics, such as Euclidean distance, are
ill-suited for handling this mixed-type data. Additionally, context
often evolves over time, requiring systems to account for data se-
quences rather than isolated snapshots. Thus, comparing two sets
of context requires capturing the temporal and relational structure
within the data.

We address this challenge by introducing Route2Vec, an attention-
based framework for encoding variable-length sequences of context
variables into fixed-size semantic embeddings. By encoding them
into a compact representation, Route2Vec enables straightforward
comparisons of routes using common metrics such as Euclidean
distance. It is trained in a self-supervised learning pipeline on a
synthetic dataset, omitting the need for costly manual labeling.

Uhttps://github.com/philipph77/Route2Vec/
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Through quantitative and qualitative analyses, we evaluate four
versions of Route2Vec— small, medium, large, and extra-large. A
linear probing analysis demonstrates that the learned embeddings
capture semantically meaningful information about routes, such as
road type distributions or speed profiles. Finally, a qualitative explo-
ration of the embedding space confirms that sequences with similar
sets of contextual characteristics are encoded in close proximity
to the learned embedding space, thus validating the framework’s
capacity to preserve contextual similarities.
We summarize the key contributions as follows:

C1: We introduce Route2Vec, a novel attention-based system for
encoding sequences of road context into semantic embed-
dings,

C2: we present a synthetic dataset for training Route2Vec in a
self-supervised pipeline, and

C3: we present comprehensive analyses of the learned embed-
ding space learned by Route2Vec.

Thus, Route2Vec enables the design of context-aware vehicle in-
terfaces that go beyond static personalization by dynamically adapt-
ing to the driver’s situational needs. By understanding and com-
paring routes based on their contextual characteristics, in-vehicle
systems can reduce interaction effort, ultimately enabling more
seamless and supportive user experiences.

2 Related Work

Route2Vec’s core underlying idea of encoding route context into
context-aware embeddings is motivated by previous research on
the significance of driving context for humans’ internal states and,
thus, for user-facing mobile applications. Methodologically, it draws
from research on self-supervised embedding learning techniques.
We discuss both areas of research and their relevance for Route2Vec
in this section.

2.1 Significance of Driving Context for Mobile
Applications

The prevalent influence of driving context, including information
on weather, traffic, road properties, and daytime, on drivers’ emo-
tions [3-6, 18, 21], drivers’ interruptibility [15, 28], and drivers’
internal states [10, 11, 29, 30] has been thoroughly demonstrated
in previous work. For example, Kim et al. presented a dataset and
neural network-based system that can predict drivers’ interruptibil-
ity from driving context [15]. Bethge et al. built a virtual emotion
sensor for drivers based on vehicle- and traffic dynamics, road
characteristics, weather information, and in-vehicle context [5]. In
subsequent work, Bethge et al. present HappyRouteing, a system
that leverages this correlation between driving context and driver-
felt emotions to compute an emotional map layer that allows users
to route along the happiest path between two points [3]. Rung et al.
take a comparable approach by proposing Autobahn, a system for
generating scenic routes. However, in contrast to Happy Routing,
Autobahn is based on the visual characteristics of route segments
extracted from street view images [25]. Exploring the influence of
road context for in-vehicle interactions, Wolf et al. present HMIn-
ference, a machine learning system that predicts future interaction
modalities for automotive Uls based on users’ interaction history
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and driving context [35]. Finally, Wiedner et al. propose an intelli-
gent User Interface for car infotainment systems that recommends
interactable UI items based on driving context [34].

The above-mentioned work shows the versatility and widespread
applicability of driving context in mobile platforms. However, these
systems use driving context to predict a task-specific label or out-
come. While effective for specific applications, they do not provide
ameans to explicitly compare different sets of driving context. Such
comparisons are essential for three reasons. First, encoding driving
context into reusable representations allows systems to general-
ize across multiple tasks, reducing required dataset size for model
training and omitting the need for feature engineering. Second,
enabling explicit comparisons increases the interpretability of such
systems as it allows us to explain why similar labels are predicted
for different scenarios by identifying similarities in their underlying
contexts. Third, efficient comparison of driving contexts provides a
foundation for broader, scalable, context-aware systems that oper-
ate in diverse environments. Route2Vec addresses these challenges
by encoding context into compact, semantic embeddings, enabling
efficient and interpretable comparisons across contexts.

2.2 Self-Supervised Embedding Learning

To encode variable-length sequences of context variables into se-
mantic embeddings, we draw from research on self-supervised
representation learning. Embedding learning is a well-known chal-
lenge in natural language processing (NLP). The authors of [22]
present the renowned word2vec architecture, trained on a large-
scale dataset (1.6B samples) to encode embeddings for words so
that words with similar meaning are encoded to similar embed-
dings. The success of this technique has inspired its application
beyond NLP, with adaptations for time-series data, spatial data, and
multimodal inputs. Hallgarten et al. propose a mechanism com-
bining momentum contrast with a reconstruction task to learn
embeddings for EEG time-series and body-worn IMU sensors [12].
In [19], the authors propose Space2Vec, a representation learning
model for spatial data that encodes absolute positions and spatial
relationships. For autonomous driving applications, Malawade et
al. introduce Roadscene2Vec, a tool that can extract, among other
things, the position of other vehicles around the ego vehicle and
embed them into a road scene-graph [20]. Finally, Baevski et al.
introduce data2vec, a generalizable self-supervised learning mecha-
nism based on momentum contrast to learn an embedding function
for images, text, and audio data [1].

While these projects served as inspiration for Route2Vec, they
differ in three ways. First, Route2Vec learns to project routes into an
embedding space that preserves road context information. Second,
Route2Vec is designed to work with potentially small (60k samples)
and unlabeled datasets. Third, Route2Vec allows the retrieval of
routes with similar sets of context through a nearest neighbor
search in the embedding space.

3 Methodology

Our methodology to learn semantically meaningful driving con-
text embeddings is two-fold. First, we propose a dataset generation
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procedure, which can be scaled to high sample sizes and is gener-
alizable to most regions on Earth?. Next, we present an encoding
architecture that projects sequences of road context to meaningful
embeddings without relying on labeled data.

3.1 Terminology

Schmidt et al. define context as a situation, and the environment
a device or user is in that is identified by a unique name and com-
prises a set of relevant features [26]. Following this definition, we
distinguish different types and sets of context variables in this work.
An overview is presented in Figure 2. We cue the set composed of
all variables that influence human beings while driving as driving
context. For this work, we consider the set to be composed of three
main clusters. First, Vehicle Context, which describes the vehicle’s
current state, such as its speed or number of occupants. Second,
Passenger Context describes the state of the human beings in the
vehicle. This can be, for example, the driver’s emotion or mental
state. Third, Route Context summarizes all variables related to the
road and environment, such as speed limits, greenness of the area,
or the road type. This route context can be further split into dy-
namic variables, such as weather- or traffic-related ones, and static
variables. Dynamic context variables vary over time for a given
location, e.g., the weather can change from cloudy to rainy. In con-
trast, static context does not vary over time for a given location or
varies so slowly that it can be neglected; e.g., a road’s surface can
be assumed not to change at a given position in the relevant time
interval. We name this set Road Context. Road context contains the
road type of the street, its surface, or speed limits, as well as the
land use around the road, i.e., whether it is an industrial area or a
rural area.

We argue that all three types of route context influence the users’
perception of the situation. The inclusion of dynamic variables in
context embeddings increases their richness; however, it reduces
their re-usability, as it is, for example, not practical to store them
in lookup tables. In this work, we focused on road context only
to make our solution applicable to the widest range of possible
scenarios. Encodings of dynamic context could be generated and
added using the same methodology.

3.2 Synthetic Dataset Generation Procedure

3.2.1 Notation. We consider the dataset D as a set of S samples
si,i.e. D= {si}?zl. Hereby, each sample s; is a sequence of context

vectors xl.<]> € RF, with j € [1, L;] being the segment ID, F being
the number of context features, and L; being the length of the
segment s;. Note that, without loss of generality, this notation
implies that the sequences are composed of segments of equal
context i.e., segments where the context vector is constant but not
of segments of equal length or travel time.

3.2.2  Road Graph Generation. Our dataset is produced by a scal-
able data generation procedure. It starts by defining a bounding box
within which the sequences shall be located. We use the OSMnx [7]
package to load a geospatial OpenStreetMap Graph G = (V, &)
consisting of road segments &, and intersections V for the de-
fined bounding box, both annotated with road context features. An

2coverage through map services is required
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Figure 2: We define Driving Context as the set of context variables that influence human beings while driving. It is composed of
three main clusters: Route Context, Passenger Context, and Vehicle Context. Route context can be further distinguished into
dynamic variables (weather- or traffic-related) and static variables (Road Context).
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Figure 3: Shown are characteristics of the sequences of road context we sample from a contextual street graph to create a
synthetic dataset. For the exemplary features of the routes in this dataset, such as (a) the route lengths, (b) the average speeds,
(c) the road type shares, and (d) the surface shares, we observe long-tailed distributions, hence the sampled routes cover a wide
variety of contexts. For (c) and (d), 10000 routes of the dataset were randomly sampled to avoid visual clutter.

overview of the features provided through OpenStreetMap is pre-
sented in Table 1. Further, we annotate the nodes V with elevation
data provided by the Copernicus Land Monitoring Service [8] and
thereafter calculate the grade for the edges & of our graph. The
context vectors of the edges form a mixture of categorical data,
boolean data, and numerical data.
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3.2.3 Route Sampling Procedure. We aim for the samples in our
dataset to represent a range of contexts that a person might en-
counter outdoors, for example, when driving a car. We argue that
using context vectors of one single position would not be meaning-
ful, but rather sequences of context vectors. We will name these
sequences routes in the following. To obtain sequences of road
context from the road graph G, we randomly sample 2Ng uniform
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Table 1: Features provided through OpenStreetMap [23]. The features below the horizontal line were used to learn the embedding

function.
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Feature ‘ Type Used for Training Example Description
lat float X 38.775845 latitude of the start of the segment (EPSG Projection)
Ing float X 8.182932  longitude of the start of the segment (EPSG Projection)
X integer X 408103.7 X of the start of the segment (UTM Projection)
y integer X 4418515.0 Y of the start of the segment (UTM Projection)
width float X 10.2m width of the segment
bearing float 4 57.50 bearing of the segment
bridge boolean 4 False segment is a bridge
curvature float v 0.027909  the Menger curvature [17]
grade float 4 -0.015 grade of the segment
junction boolean 4 True segment is a junction
lanes integer 4 3 lanes of the segment
length float 4 31.743m  length of the segment
oneway | boolean v True segment is a one-way road
road type | categorical 4 residential  road type of the segment
speed integer 4 50 km/h  speed on the segment
surface | categorical v asphalt surface of the segment
travel time integer v 23s time to pass the segment
tunnel boolean v False segment is a tunnel

graph-constrained points, of which half are referred to as the start
point and the other half as the destination point. Next, each start
point is randomly matched to a destination point without replace-
ment, and the shortest path between these pairs is calculated. By
assuring that each point is used only once as a start or destina-
tion point in our dataset, we reduce the likelihood of edges near
these points being over-represented in the sampled paths. Each
path is represented as a sequence of graph edges that one has to
travel along to get from the start point to the destination point. By
concatenating the context vectors of the edges along a path to a
sequence, we obtain a sample s; for our dataset. A detailed overview
of the distributions of some exemplary features is shown in Figure 3.
We observe long-tailed distributions, e.g., over the average speed
of the routes; hence, the sampled routes cover a wide variety of
contexts.

3.24  Preprocessing. Our final dataset consists of approximately
60 000 routes, of which we use 60% as training data, 20% as validation
data, and the remaining 20% as testing data. Numerical features are
standardized; categorical features are one-hot encoded. As we find
the data coverage for the feature width to be rather low, we refrain
from using it in our study. Missing values further present in the
features curvature, lanes, and surface are filled with zeros.

3.3 Route2Vec - Road Context Embedding
Framework

3.3.1 Learning Pipeline. Our proposed road-context embedding
framework, Route2Vec, trains a deep neural encoding architecture
in a custom self-supervised representation learning pipeline. An
overview of the learning pipeline is presented in Figure 4. The goal
of the training is to make the encoder learn a meaningful projection
function from sequences of context s; to embeddings e;. To these
means, we define a set of T proxy tasks to obtain a supervision
signal that guides the training process. Multiple reconstruction
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models are trained to recover certain contextual information from
the embeddings, for which the labels can be calculated on the fly
from the data itself. After training, these reconstruction models can
be omitted, and the encoder can extract context-embedding from
unlabeled data.

3.3.2  Encoding Architecture. The neural encoding architecture is
inspired by BERT [9] and consists of a tokenizer, positional em-
beddings, and a stack of Ny transformer encoders. The model
learns a mapping function f parameterized through Ognc with
Soene RIXF _ RP . As in BERT, the segments xi<j> of sample s;

are first mapped to tokens zi<J ~ by a tokenizer with parameters
O1ok C OeNc. Here, the tokenizer is implemented as a single linear
layer model. Next, a trainable token zi<0> C Ognc is added to the
beginning of the sequence, which we refer to as CLS token. It is
randomly initialized and learned during training. A positional em-
bedding vector is added to each of the elements in the sequence
as introduced in [32]. These vectors are composed of sinusoidals
and are unique for every position j in the sequence, allowing the
model to exploit positional information. The so obtained tokens are
then passed through a transformer-based encoder, parameterized
through O1;ans € OpNne, Outputting a sequence of representations

<Jj> .
e-7”, where we use the one at first position ei<0>

; as context em-
bedding. For simplicity, we will further denote the route context

embedding with e;.

3.3.3 Classifiers’ Architecture. The route context embeddings e;
are used as input for T linear reconstruction models implemented
as single dense layer models with parameters Oy, t € [1,T] to
retrieve certain context-information y(' ) of the input, that can be
calculated on-the-fly. Thus,

(1)
frgetn :RP 5 RET, (1)
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Figure 4: Route2Vec’s architecture consists of an encoder and multiple reconstruction models. The encoder projects sequences of
road context to semantic embeddings. During self-supervised training, multiple linear reconstruction models try to reconstruct
encoded context information from the embeddings, leading the encoder to learn a useful projection function. The labels for
the reconstruction models can be calculated on the fly from the data itself.

and

6i") = Oggcunr e @)
We define the following contextual information of the routes as la-
bels for the reconstruction tasks: (1) summed travel time, (2) summed
route length, (3) mean curvature, (4) mean absolute grade, (5) road
type share. For tasks (1) - (4) we encounter ordinary regression
task (C(t) = 1), thus we use a mean-squared error (MSE) loss
£ = ||y§t) —g;® [|3 for training of the reconstruction models’
weights. In the case of the task (5), we obtain a multidimensional
regression (€®) > 1), so we define yl.(cs) as the share of class ¢ in
sample i, and optimize the Cross-Entropy (CE) loss

c®
L0 =%y log), )
c=1
with
%) = Softmax(y>)). 4

3.3.4  Parameter Update. All parameters 6 = {6gnc, 9}(53)0 s Olg)c}
are trained by backpropagation of the total loss

T
L= Zatﬂf). (5)

t=1

with A; being the loss-weight for reconstruction task t. This leads
to the reconstruction models being updated only w.r.t. the task-
individual loss, as

Voo LD =0, ifi#t (6)
REC
hence
Voo L=4V, 0 LY %)
REC REC

Further, the encoder model is updated with respect to all task-
individual loss terms, as

T T
VoeneL = Vopne Z )’t‘E(t) = Z )’tVeENC‘E(t) ®

t=1 t=1
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3.4 Hyperparameter Settings

For our study, we use a bounding box near a medium-sized city?, as
this location covers a variety of road features such as motorways,
rural roads, or junctions in urban areas. We train our model for a
maximum of 100 epochs with early stopping based on the validation
loss. The encoder consists of a stack of 6 Transformer encoders,
each with 32 head Attention layers. The loss weights A; are all
set to 1. Further we train, 4 different versions of Route2Vec with
4 different embedding space sizes i.e., SMALL (D = 128), MEDIUM
(D = 256), LARGE (D = 512), and EXTRA-LARGE (D = 1024).

4 Results

4.1 Semantic Exploration

4.1.1  Cluster Analysis. In order to verify that routes with similar
road contexts are encoded to similar embeddings, we visualize the
characteristics of routes with similar embeddings. To these means,
we randomly select an embedding from the embedding space and
retrieve its 9 nearest neighbors. Figure 5 (a) - (c) visualizes cer-
tain characteristics of the so-found routes i.e., the thicknesses of
the bars indicate the driveable speed, the lengths of the segments
correspond to the travel-time, and the colors represent the road
type. We can observe that neighboring encoded routes have similar
characteristics e.g., in Figure 5c all of them predominantly consist of
segments with road type secondary and have similar characteristics
in terms of speed. By comparing Figure 5 (a) and (b), we can addi-
tionally observe that the use of positional embedding vectors leads
to the road-context embeddings not only encoding information
about the overall presence of characteristics in the sequence but
also about their position in the sequence. In Figure 5d, we compare
10 randomly selected encoded routes. The figure shows the variety
of characteristics the sequences cover and underlines the usefulness
of the projection function learned by Route2Vec.

3Stuttgart, Germany
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Figure 5: The visualization shows characteristics of roads that Route2Vec has computed similar embeddings for. (a) - (c) each
depicts a distinct route (Route 0) along with the nine routes whose embeddings are closest in the embedding space. (d) shows a
randomly selected set of routes in the embedding space. One can see that embeddings neighboring in the embedding space

represent routes with similar road contexts.

4.1.2 Embedding Space Visualization. In Figure 6, we map the
512-dimensional embedding space of Route2Vec-LARGE into a 2-
dimensional space by using t-distributed stochastic neighbor em-
bedding (t-SNE) [31]. In Figure 6a, the samples are color-coded by
their predominant road type, i.e. by the road type with the high-
est share throughout the sequence. We observe a clustering for
different predominant road types. Further, in Figure 6b, the same
embedding space is color-coded by the share of the road type sec-
ondary. We can identify a separate cluster of samples with a high
secondary road share. Samples with a slightly lower share of this
road type are encoded to slightly different embeddings, visible next
to the clusters with a high share. Both figures indicate that routes
of similar road contexts are mapped to similar embeddings.

4.2 Linear Probing

For a quantitative evaluation of the learned embeddings, we em-
ploy a linear probing schema, i.e., we freeze the encoder network’s
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parameters and train multiple linear models to reconstruct certain
contextual characteristics from the learned embeddings. We de-
fine the following labels: (1) Summed Travel Time, (2) Summed
Route Length, (3) Mean Curvature, and (4) Mean Absolute Grade.
Each reconstruction model is randomly initialized and trained for

100 epochs. We report the adjusted R?-Score (Ez) and the mean
squared error (MSE) on the testing data; the results are shown in
Table 2. The labels for tasks (1) and (2) are sums of normalized
features, whereas the labels for tasks (3) and (4) are mean values
of normalized features. Therefore, the MSE for tasks (1) and (2)
are, as expected, higher than for tasks (3) and (4). We will first
focus on the results of the Route2Vec LARGE configuration with

512-dimensional embeddings. The ﬁz—Scores of 0.78, 0.75, and 0.96
together with the MSEs of 1.06, 1.91, and < 0.01 respectively, evalu-
ated for the tasks (1), (2), and (4) indicate that variance related to (1)
the summed travel time, (2) the summed route length, and (4) the
mean absolute grade is encoded in the learned embeddings. Even
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Table 2: Quantitative evaluation results of the reconstruction tasks for different embedding dimensions D.

SMALL MEDIUM LARGE EXTRA-LARGE
D =128 D =256 D =512 D =1024
2.4M params 5.3M params 12.6M params 33.6M params
=2 =2 =2 =2
Representation Evaluation Task R (/) MSE(\) | R (/) MSE(\) | R (/) MSE(\) | R () MSE(\)
(1) Summed Travel Time Regression 0.58 2.11 0.71 1.42 0.78 1.06 0.81 0.87
(2) Summed Route Length Regression 0.53 3.70 0.71 2.23 0.75 1.91 0.78 1.61
(3) Mean Curvature Regression < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
(4) Mean Absolute Grade Regression 0.71 0.01 0.90 < 0.01 0.96 < 0.01 0.97 < 0.01

t-SNE Component 2

-20 0 20
t-SNE Component 1
primary [ ]
residential ([ ]

40 60

trunk
unclassified

® living street
® motorway

secondary
tertiary

(a) predominant road type

the label. Thus, both values combined indicate that the evaluation
model can predict the label from the embeddings.

4.3 Influence of the Dimensionality in the
Embedding Space

We evaluate the influence of the dimensionality of the learned em-
beddings by training different versions of Route2Vec with different
embedding sizes (see Table 2). Overall, we report an expected de-
crease in performance if using lower-dimensional embeddings, e.g.
for the summed travel time regression (1), we observe an increase
in MSE from 1.06 (LARGE) to 2.11 (SMALL). Further, we observe an
increase in the evaluation models’ performances if the embedding
size is increased to D = 1024, e.g., MSE for (1) the summed travel

—2
time decreases, and R~ does increase from 0.78 to 0.81.

4.4 Generalization to Unseen Regions

We evaluate how meaningful the embeddings of Route2Vec are for

% routes from regions with other regional peculiarities than the train-
~ 60 ing data. Thus, we evaluate Route2Vec’s capabilities to generalize to
£ 40 unseen data. Therefore, we sample a second dataset according to
g 20 the methodology proposed in Section 3.2, this time with a bounding
g box from a different country*. Additionally, we sample only 10%
8§ © as many routes as for the training dataset and increase the area
Y20 covered by the bounding box by a factor of 4 to make the presence
) 40 of similar routes less likely (Ng = 1000, and area ~ 5730 km?). We

analyze the embedding space by visualizing clusters of similar em-

60 beddings, shown in Figure 7. As expected, we observe that routes
-80 from the unseen region that form a cluster in the embedding space
-80 -60 -40 -20 O 20 40 60 80 are less similar than the ones previously found (Figure 5). Still, we
t-SNE Component 1 can report that these routes share similar characteristics e.g. regard-

I_ | _| ing road types and speed profile. The decrease in similarity is likely

0.0 0.5 1.0 due to the absence of more similar routes in the dataset; hence, the

(b) road type share of class secondary

Figure 6: A t-SNE visualization of the embeddings, color-
coded by different characteristics, reveals that routes with
similar road contexts are encoded to similar embeddings.

though the R’-Score for the task (3) is < 0.01, the corresponding
MSE of < 0.01 shows that this may be due to the low variance of
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embeddings forming a cluster eventually still represent routes of
highest similarity in the dataset. Thus, the experiment provides
solid foundations that the trained version of Route2Vec can be used
as a road context-extractor for data of arbitrary regions without
laborious fine-tuning.

“Florence, Italy
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Figure 7: The visualization shows features of routes for which
Route2Vec has computed similar embeddings. The corre-
sponding routes were sampled from a region different from
the training data. Thus, they have different regional pecu-
liarities.

5 Discussion

5.1 Limitations

Interpretability of Embeddings. While Route2Vec effectively en-
codes contextual similarities between routes, the resulting embed-
dings are inherently abstract and not directly interpretable by hu-
mans. This limits the transparency of the system and poses chal-
lenges for applications where explainability is critical, such as in
safety-critical mobility systems. For example, although two routes
may have similar embeddings, it is not immediately clear which
specific contextual features contribute to their proximity in the em-
bedding space. While our evaluation tasks provide indirect evidence
of which aspects are captured, a more interpretable or disentangled
embedding structure could support its trustworthiness. Future work
may explore methods such as post-hoc explanation tools to provide
greater insight into the semantics of the learned embedding space.

Sensitivity to Regional Peculiarities. We conducted extensive qual-
itative and quantitative analyses to examine the embedding space
learned by Route2Vec. A set of four representation evaluation tasks
revealed that road contextual information is quantitatively encoded
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in the embeddings. The qualitative analyses of the learned em-
bedding space confirmed that routes with similar context sets are
encoded in close proximity to the embedding space. Still, we find
the learned embedding space to depend on the regional peculiarities
in road characteristics of the bounding box from which the routes
were sampled. However, the used feature set is independent of such
regions. Thus, while features like curvature might become more im-
portant if, for example, routes from a mountainous region are used
solely for training Route2Vec, Route2Vec will still be able to encode
routes from non-mountainous regions. Further, we demonstrated
in our analyses that the key property of Route2Vec, i.e., encoding
similar routes to similar embeddings, still holds if routes of such
unseen and different environments are used.

Dynamic Context Features. This work focused on static road con-
texts, such as road type distributions, curvature, and intersections,
which are inherently reusable across different times and scenar-
ios. This focus enables the embeddings produced by Route2Vec to
be encoded once and reused later on. However, dynamic context
variables such as weather, traffic conditions, or time of day might
also be relevant for real-world applications, as they influence both
the driving experience and the preferences of drivers and passen-
gers. In future work, we aim to incorporate such dynamic context
into Route2Vec to create even richer embeddings. One potential
approach is to include these variables directly as features during
the training process alongside static route context. Alternatively,
dynamic context variables could be encoded separately and con-
catenated with static embeddings, creating a modular framework
that integrates both static and dynamic factors [24]. This exten-
sion would enable Route2Vec to support dynamic context-aware
systems that respond to the full range of factors influencing driving
conditions.

5.2 Building In-the-wild Context-Aware
Systems with Route2Vec

Route2Vec encodes heterogeneous driving context into fixed-size
semantic embeddings, offering a compact and expressive represen-
tation of a route. This makes it a powerful foundation for building
real-world context-aware systems.

Building such systems based on Route2Vec involves three main
steps

(1) Capture the route context, either via onboard sensors (e.g.,
cameras) or by querying contextual map APIs as done in this
work.

Encode the context into an embedding using a pretrained
Route2Vec model. If using the same context variables as in
this work, the data can be used directly. If new variables
are introduced, either a supplementary model is needed, or
a new Route2Vec model must be trained as outlined in this
work.

Feed the embedding into a downstream system, that
was trained to perform specific tasks, such as predicting
drivers’ interruptibility [36] or anticipating infotainment
interactions [35]. The same embedding can support multiple
downstream tasks in parallel.

—
N
~
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This modular architecture, with Route2Vec as a shared feature ex-
tractor, offers three key benefits over end-to-end models. First, it
would significantly reduce the amount of raw contextual data that
contextual systems need to process while retaining meaningful se-
mantic information. Second, the embeddings could be shared across
various context-aware downstream systems, preventing computa-
tionally costly task-specific and redundant feature extraction in
each of the systems separately. And third, the embeddings could
be directly used to identify route segments with contexts similar
to those previously observed. Thus, Route2Vec can serve as the
backbone for real-time, context-aware interactions that enhance
the adaptability and personalization of mobile systems, particularly
in dynamic driving environments.

5.3 Applications in Human-Computer
Interaction

Route2Vec’s ability to encode variable-length sequences of mixed-
valued feature vectors into a single embedding vector enables easy
evaluation of quantitative similarities between road-contextualized
routes. We are convinced that Route2Vec will be useful for various
application domains in Human-Computer Interaction due to this
property.

For example, Route2Vec can be used to build smart in-vehicle
Human-Machine Interfaces (HMIs) that adapt shown content
dynamically to the route context drivers are currently exposed to.
For example, if a driver is entering a high-traffic urban environment,
the HMI could proactively activate a calming playlist or propose
alternate routes. When combining route context embeddings with
user profiles and historical interaction data in a context-aware rec-
ommender system [16], this could significantly reduce interaction
effort, surface timely content, and ultimately contribute to a more
seamless and supportive in-vehicle experience.

Further, Route2Vec’s capabilities to quantitatively compare routes
by their context could also be leveraged for retrieval tasks. Given
the embedding of one route, one can easily find routes with similar
sets of route context by searching for the closest neighbors in the
embedding space of Route2Vec. This would allow, for example, novel
fitness applications to suggest running, cycling, or walking routes
that match users’ historical preferences or mimic the contextual
features of iconic tours, such as the elevation profiles or road types
of the Alpe d’Huez. Similarly, leisure-oriented navigation apps could
suggest scenic “Sunday drives” that reflect a user’s environmental
preferences, like winding rural roads. Thus, Route2Vec would allow
route planning to go beyond time or distance by incorporating
context-oriented criteria. Additionally, developers for autonomous
driving functions could use the embedding space to search for and
curate collections of routes with similar and potentially challenging
characteristics, such as sequences of sharp turns [2, 14, 33]. This
would allow for more targeted testing and validation of autonomous
systems under comparable contextual conditions without needing
to manually label or categorize massive route datasets.

Finally, in next Point-of-Interest (POI) recommender sys-
tems [13], the fixed-size embeddings output by Route2Vec might
serve as context-aware item embeddings. Hence, rather than recom-
mending POIs solely based on previous visits or content similarity,
systems could incorporate the contextual features of routes that

331

Philipp Hallgarten, Thomas Kosch, Tobias Grosse-Puppendahl, and Enkelejda Kasneci

users have taken in the past. For instance, a driver who often travels
scenic rural roads might prefer POIs like lookout points, picnic ar-
eas, or serene coffee shops, whereas a commuter navigating urban
highways might be more interested in quick-service restaurants
or fuel stations. Embedding the route context allows the system to
align POI suggestions with the environments users tend to enjoy,
creating more meaningful and situationally relevant recommenda-
tions.

Thus, Route2Vec has the potential to enable or facilitate a variety
of different applications. While the ideas hold promise, further re-
search is needed to assess whether Route2Vec’s embeddings capture
sufficient nuances of route context for these applications.

6 Conclusion

With Route2Vec, we introduce a novel semantic road-context em-
bedding system. We demonstrated Route2Vec’s ability to learn road-
context embeddings from routes of varying lengths in a self-supervised
learning schema. Our analyses show that similar sets of road context
are encoded to similar representations, allowing for easy compari-
son and retrieval of contextual routes. We are confident that our
work will advance the field of context-aware systems by providing
a plug-and-play module that enables the use of contextual road
features. This capability can enable context-informed interactions
with intelligent systems in moving platforms, such as adaptive
route planning, personalized infotainment, and proactive driver
assistance. By enabling efficient comparisons between sets of route
context, we are confident that Route2Vec can become a foundational
building block for developing advanced context-aware applications.
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