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Understanding users’ environments is crucial for determining their states, needs, and interactions with technology. This work

focuses on route context, including environmental factors such as road conditions, traffic, and weather that influence users

while traveling. Integrating route context with LLMs enables reasoning over environmental factors, thus allowing users to ask

questions like ‘When is the best moment for a phone call along my route?’ or ‘Is this a good route for a drive in a convertible?’.

We introduce the first LLM that natively understands route context. We create ContextualRoutes1, a dataset of 320k routes,

each comprising road, weather, and traffic data. We annotate these routes using a template and a teacher model to create

LabeledRoutes1, a multimodal multi-task question-answering dataset with over 1k tasks and 40k conversations containing

routes and text. Based on the first dataset, we train the first route context tokenizer that groups the routes into semantically

meaningful clusters. On its basis, we propose the first route-context-aware LLM and find it capable of zero-shot reasoning

on routes. Still, we urge that further research on learning cross-modal route-to-text understanding is necessary and discuss

challenges in the future development of artifacts for this novel branch of research.
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1 INTRODUCTION

Since the release of ChatGPT
2
, the rising popularity of Large Language Models (LLMs) has revolutionized how

we interact with technology. Due to LLMs showing promising reasoning capabilities and factual knowledge, there

have been intensive efforts to include LLM-based interfaces in a growing number of applications, for example,

1
we made the ContextualRoutes dataset available under Open Database License (ODbL), and the LabeledRoutes dataset under the Open Data

Commons Attribution License (ODC-By), at https://huggingface.co/RouteLLM-Dataset

2
https://openai.com/chatgpt/, last accessed July 16, 2025
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smart assistants on mobile devices [5]. Such systems allow for interactions through a natural language interface,

making them simple and intuitive for their users. However, a critical limitation of such LLM-based systems is that

they can only process text, images, or audio, thus requiring the encoding of all inputs as one of these modalities.

While current LLMs support very large context lengths of up to one million tokens, representing multivariate

route context such as weather, traffic, and road states purely in text or image form remains inefficient and indirect.

For instance, to describe the dynamic state of a road segment, e.g., its curvature, slope, surface type, or traffic

flow, many text tokens or pixels values are required. Additionally, each of these tokens then needs to be encoded

and interpreted by the model to infer its semantic meaning. This overhead becomes especially pronounced when

dealing with longer sequences of route context, where thousands of segments must be represented. Consequently,

modern LLMs are not well-suited to understand the user’s environment in this regard, preventing the easy

creation of context-aware, empathic, and user-centric systems on the basis of them.

In this work, we take a first step towards solving this problem by focusing on the specific set of environmental

contexts that describes the route a user is traveling along. We envision an LLM that can natively understand and

reason with route context data, thus allowing users to ask questions that require reasoning about the route they

are traveling along, for example, “What is the best time for a phone call along my route”? or “Is this a scenic route?”.
To lay the foundation for this long-term goal, we create two large-scale route datasets and make them publicly

available. The ContextualRoutes dataset comprises approximately 325𝑘 routes from 18 locations with a total length

of over 8.9 million kilometers. In total, the dataset comprises 38 route context features describing road properties

(e.g., the number of lanes), the weather, and the traffic along each segment of the route. Based on this dataset, we

create the LabeledRoutes dataset, a multimodal multi-task dataset that allows to instruction-tune LLMs on routes,

containing over 1 000 tasks from 36 categories that require feature extraction, reasoning, and understanding of

route structure.

We use these datasets to train an architecture similar to MotionGPT [28], thus creating the first LLM with

token-level route context understanding, referred to as native route context understanding in this manuscript.

Through a vector quantized-variational autoencoder (VQ-VAE), the approach efficiently converts a series of route

context features into a series of route tokens comparable to text tokens in natural language processing (NLP). We

demonstrate that these route tokens are semantically meaningful and encode discriminative variances. Next, we

train an LLM (Mistral Instruct 7B
3
[27]) in a three-step pipeline to first understand route tokens, then learn a

cross-modal understanding between natural language and routes, and finally align the outputs for a specific task.

We demonstrate that our final system provides a natural language interface that allows users to naturally interact

with routes. In an exploratory analysis, the system shows zero-shot reasoning capabilities on routes, i.e., it is able

of answering questions about unseen routes without additional task-specific training.

In summary, this work has four contributions:

C1: Two novel route context datasets ContextualRoutes and LabeledRoutes
C2: The first Route-Tokenizer that translates segments of route context into tokens that can be processed by

downstream LLMs analogously to tokenizers for natural language,

C3: A first prototype for an LLM with token-level route-context understanding that allows users to leverage

the reasoning capabilities of modern LLMs for planning and gathering information about their route, and

C4: A detailed discussion on challenges for the future development of LLMs with token-level route-context

understanding

2 RELATED WORK

This section outlines the importance of route context, the current state of research on multimodal LLMs, and

previous works on geospatially-aware LLMs.

3
https://mistral.ai/news/announcing-mistral-7b/, last accessed July 16, 2025
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2.1 Significance of Context for Ubiquitous Systems

Prior research has demonstrated that context signals, such as location, weather, traffic, road properties, and

daytime, strongly influence humans’ internal states [9, 10, 36, 44, 47]. This relationship has been leveraged by

various previous works to create novel user experiences through context-aware systems. For example, Frison

et al. discuss user interfaces for autonomous vehicles that automatically adapt based on traffic scenarios [20],

Tavakoli et al. use information on road conditions and users’ environments to create hierarchical driver state

models [48], and Acer et al. present a conversational agent that provides information about landmarks based

on users’ environmental sensor data [2]. Further, Sheshadri and Hara propose a context-aware conversational

agent [45] that enables conversational localization, i.e., it helps users with indoor localization by asking them

questions about their surroundings and matching the information with floor maps. Wut et al. [53] propose a

system that predicts the interruptibility of drivers based on context information captured through video cameras

and vehicle telemetry. Kari et al. introduced SoundsRide [29], a music augmentation system that temporally aligns

significant events in the audio signal, e.g., beat drops, to significant changes in the user’s environment, e.g.,

entering a tunnel. Belz et al. transfer the concept of synchronizing auditive affordances with users’ context from

music to audio books [7]. With Story-Driven, they propose a system that generates an audiobook with the plot

taking place at landmarks along the route a user is traveling and then synchronizes the time the landmark is

mentioned in the story with the time the user passes along.

While such context-aware systems underline the utility, versatility, and thus the importance of understanding

context, they all have one key limitation, they are tailored to specific scenarios and may not easily generalize

to others. Simultaneously, we observed how research in various areas has experienced a major push through

the introduction of LLMs, allowing researchers to rapidly prototype systems with reasoning capabilities that

generalize to a variety of problems. By introducing RouteLLM, we bring these benefits of LLMs to the research of

context-aware systems. Through natively understanding route context, RouteLLM can serve as a general system

with broad applicability for scenarios that require reasoning and zero-shot capabilities based on context, thus

creating more personalized and adaptive experiences.

2.2 Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) are LLMs that combine understanding of text with at least one

other modality, thus enabling the user to interact with the modalities in natural language and leverage the

reasoning capabilities of LLMs. Previous research explored images [3, 33, 34], videos [56], or audio recordings [18]

as additional modality. One approach to creating an MLLM is multimodal instruction tuning [54]. The model is

trained using a special instruction tuning dataset that combines both modalities by concatenating embeddings of

the second modality to the prompt token embeddings. The method for extracting the embeddings of the second

modality differs between models. In [34], the authors use CLIP [39] to extract visual features from images. A

linear layer projects the visual features to create the image embeddings. In their later work, the authors replace

the linear layer with an MLP to improve the resulting embeddings [33]. The authors create a multi-task visual

instruction tuning dataset using image captions and GPT-4 to label their questions. They use a subset of this

dataset to align the features by freezing the LLM and CLIP and only training the projection unit. The authors

update the projection unit and the LLM during the instruction tuning. Their final models, LLaVA and LLaVA-1.5,

achieve state-of-the-art performance on visual benchmarks. The authors of [28] propose MotionGPT, a model

that uses a Vector Quantized-Variational Autoencoder (VQ-VAE) as a motion tokenizer to encode human motion

sequences into tokens. Trained on the HumanML3D [21] and KIT-ML [38] datasets, MotionGPT handles tasks

like motion synthesis and motion captioning by combining motion and language data through a pre-trained

FLAN-T5-Base LLM. The model undergoes three training phases: motion tokenization, cross-modal pretraining on

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 83. Publication date: September 2025.
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motion-language pairs, and instruction tuning for multi-task motion question answering. MotionGPT outperforms

state-of-the-art models in both motion captioning and motion synthesis.

These works successfully extend LLMs capabilities to visual and motion data. While they lack the ability to

process complex environmental contexts like route context, we build upon the introduced concepts by introducing

a Route Tokenizer and a specialized dataset for route context understanding. Unlike previous multimodal models,

which primarily focus on visual or motion data, our system targets route-based reasoning and decision-making,

to enable a more context-aware and practical application of LLMs.

2.3 Geospatially-aware LLMs

Many automotive systems require geospatial awareness, meaning the ability to understand and interpret geograph-

ical locations and spatial relationships between objects. Some studies have demonstrated that LLMs pretrained

on natural language corpora, such as GPT-4, exhibit a limited degree of geospatial understanding [11, 37, 41]. For

instance, [37] shows that GPT-4 can achieve a B+ on a geographic information systems (GIS) exam. However,

processing route context demands even deeper geospatial comprehension, as it involves reasoning based on

spatial features along a route. While there are efforts to enhance the geospatial capabilities of LLMs through

fine-tuning [32] and prompt engineering [35], none of these works directly integrates geospatial awareness with

route context reasoning in LLMs.

In contrast to these studies, our work addresses this gap by introducing a system that natively integrates

route-specific contextual features, directly integrating structured route-specific features at the token level. This

enables applications where real-time decision-making along a route depends on environmental factors like traffic,

weather, and road features. Thus, this work introduces the first framework that combines the reasoning abilities

of modern LLMs with route context understanding.

3 METHOD

3.1 Overview

This work aims to develop an LLM that can natively understand route context alongside natural language,

enabling novel interactions such as route-based question-answering or making decisions based on environmental

factors while traveling, e.g., determining the safest or most convenient time for a phone call along a route. There

are several approaches to integrating route context with LLMs. One could encode route data as text or images

or even extract visual features using models like CLIP. However, these methods struggle with the dynamic

and multi-dimensional nature of route data. Encoding routes as text may oversimplify complex environmental

factors, while images fail to capture temporal relationships between consecutive route segments. Additionally,

both approaches rely on indirect encoding of route context, requiring verbose textual or visual descriptions,

which increases input size and makes processing less efficient. To address this, we propose a more scalable and

structured approach by encoding route context into tokens. Inspired by the architecture of MotionGPT [28],

which processes human motion data with LLMs, we first train a VQ-VAE-based route tokenizer. This tokenizer

converts route context vectors into discrete tokens that can be fed into the LLM, similar to how natural language

tokens are processed. By using tokens, we ensure that route data is represented in a compact, efficient format

that integrates seamlessly with the LLM’s existing natural language capabilities. This approach also allows to

maintain a prompt size within the context window limits of standard LLM architectures. In the following sections,

we describe the architecture and training strategy for RouteLLM in detail. We present an overview of RouteLLM’s
system design in Figure 1.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 83. Publication date: September 2025.
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Fine-tuned 
LLMTokenized Input

User Query

Route Tokenizer

Text
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Fig. 1. Overall System Design of RouteLLM. We add a VQ-VAE-based Route Tokenizer to a pretrained LLM and fine-tune it

for cross-modal understanding between route context and natural language. RouteLLM allows users to interact with their

route in natural language, and enables tasks that require reasoning and semantic understanding of route context, e.g., finding

the best segment for a phone call along a route.

3.2 Definitions

We use a road graph G = (N , E) with nodes N and edges E, where each edge represents a road segment and

is described through a set of𝑚 road-context features, such as the number of lanes or the class of the road (e.g.

a bridge). It is important to note that features can be heterogeneous. We now define a route as the sequence
of edges connecting two nodes from N , and route context as the sequence of corresponding context vectors

[𝑟𝑖 ]𝐿𝑅𝑖=1 with 𝑟𝑖 ∈ R𝑚
. The goal of this work is to train an LLM so that it understands such route context besides

natural language. Hereby, we consider an LLM as a system that processes a sequence of id values, named tokens,

[𝑡𝑖 ]𝐿𝑇𝑖=1𝑡𝑖 ∈ V , and outputs another sequence of tokens from the same setV . Each token usually represents a word

piece of natural language and the set of tokens V is usually referred to as vocabulary. In the LLM, each token is

first mapped to an embedding by multiplying a one-hot encoded version of it with a matrix called embedding

table, and then processed with a stack of self-attention layers. After the last layer, the outputs are mapped back

to a sequence of probability distributions over the vocabulary. To adapt an LLM so that it can process route

context besides natural language, we add a second tokenizer to the architecture, dedicated to encoding route

context. This Route Tokenizer maps a sequence of route context [𝑟𝑖 ]𝐿𝑅𝑖=1 to a sequence of route tokens [𝑢𝑖 ]𝐿𝑅𝑖=1 with
𝑢𝑖 ∈ V∗,V∗ ∩V = ∅, a corresponding decoder reconstruct the original input from route tokens output by the

LLM (see Figure 2). This allows for route context to be used as input to or output by the LLM besides the text

tokens. The vocabulary of the LLM is thus updated to V′ = V∗ ∪V , with V′
comprising text and route tokens.

We use a specific training strategy to train an LLM that was previously pretrained on a corpus of natural language

to learn a cross-modal understanding from text to route context and vice versa.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 83. Publication date: September 2025.
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Fig. 2. We use a trained Encoder of a VQ-VAE as Route Tokenizer for RouteLLM. The VQ-VAE uses vector quantization to

map inputs to discrete vector representations (codebook vectors). It is trained in a multi-objective optimization using a

combination of multiple loss terms.

3.3 Route Tokenizer

Overview. Similar to unimodal LLMs, we train the tokenizer and the Transformer backbone separately. The

tokenizer in our work is trained together with a corresponding decoder as part of a Vector Quantized-Variational

Autoencoder (VQ-VAE) architecture. An illustration of this network is shown in Figure 2.

The VQ-VAE takes data like route information as input, compresses it into simpler, discrete vectors (codebook

vectors), and then reconstructs the original data from those vectors. This allows us to map continuous route data

to a manageable set of discrete tokens, which can be used to train an LLM to understand and reason about route

context. The codebook vectors in the VQ-VAE can be considered semantic prototypes or primitives. Each vector

in the codebook represents a distinct, meaningful aspect of the route context data, capturing core features such

as road type, traffic level, or weather conditions.

The encoder 𝐸 uses a route context vector 𝑟𝑖 as input and encodes it to a representation 𝑧𝑖 ∈ R𝑑𝑒
. This

representation is then quantized by a vector-quantization layer 𝑄 to map 𝑧𝑖 to a codebook vector 𝑐 𝑗 from a

codebook𝐶 of size 𝑛 with the lowest Euclidean distance to 𝑧𝑖 . The decoder 𝐷 then reconstructs the original input

𝑟𝑖 from the quantized codebook vector 𝑐 𝑗 . The output reconstruction is denoted by 𝑟 ′𝑖 .

Training. The VQ-VAE is trained by backpropagation of a multi-objective loss function that consists of three

parts:

• Reconstruction Loss: This measures the difference between the input 𝑟𝑖 and the reconstructed output 𝑟
′
𝑖 and

ensures that the decoder accurately reconstructs the original input from the quantized latent representation.

• Embedding Loss: This loss enforces proximity between the encoder’s output and its nearest discrete

codebook vector by minimizing the Euclidean distance between them. It ensures the latent representation

is well-aligned with the pre-defined codebook, improving quantization.

• Commitment Loss: This regularizes the encoder by penalizing large deviations between the encoder’s

output and the selected codebook vector. It prevents the encoder from making arbitrary updates that could

destabilize training by encouraging it to “commit” to the nearest vector in the codebook.

Since the quantization process is not differentiable, the gradients cannot be directly propagated from the decoder

back to the encoder. To overcome this issue, we use straight-through estimators, i.e., we “copy” the gradient directly

from the decoder to the encoder during the backward pass, thus bypassing the non-differentiable quantization

step [8, 49]. As a result of the straight-through estimator, there is no gradient to optimize the codebook itself.

Thus, following [49], we use an exponential moving average to update the codebook vectors instead of the

embedding loss.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 83. Publication date: September 2025.
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As opposed to previous applications of the VQ-VAE, the features of the input 𝑟𝑖 in our work are heterogeneous,

i.e., they comprise numerical as well as categorical features. For the numerical features, the reconstruction through

the decoder represents a regression task, whereas for categorical features, it is either a binary or a multi-category

classification task. To address this problem, we use a mixed reconstruction loss defined through

L𝑟 = 𝛾𝑐𝑜𝑛𝑡L𝑐𝑜𝑛𝑡 + 𝛾𝑐𝑎𝑡L𝑐𝑎𝑡 + 𝛾𝑏𝑖𝑛L𝑏𝑖𝑛 (1)

with weights 𝛾𝑖 and feature type-wise losses L𝑐𝑜𝑛𝑡 for continuous features, L𝑐𝑎𝑡 for multi-category features, and

L𝑏𝑖𝑛 for binary features. During training, we select the correct loss function for each feature based on its type

and then sum the losses for all feature types.

Due to the structure of the decoder network, the features encoded in the codebook vectors are jointly decoded

into a reconstruction vector, which is used to calculate the loss. To facilitate the learning process and directly

shape the embedding space with respect to each feature individually, we add feature-specific projection layers

that predict the value of each feature from the output of the quantization layer. Due to the straight-through

estimators used during the backpropagation of the loss function, these projection layers directly influence the

output of the encoder and, therefore, regularize the embedding space. The loss function of the projection layers

L𝑝𝑟𝑜 𝑗 is a mixed reconstruction loss with the same loss weights as the decoder reconstruction loss. A coefficient

𝛾𝑝𝑟𝑜 𝑗 is used to control the influence of it.

Without appropriate regularization, the codebook vectors might not adequately represent realistic route context

segments, leading to poor generalization and less useful route tokens for downstream tasks. Prior work on visual

prototypes used 𝑟1 and 𝑟2 regularization to create meaningful and interpretable prototypes [31]. The 𝑟1 loss leads

to each codebook vector being as close as possible to the input vectors, making them interpretable since the loss

anchors the codebook vectors in the training dataset. The 𝑟2 loss is equal to the embedding and commitment loss

calculated over a whole batch. We include the 𝑟1 loss to increase the interpretability of our codebook vectors

since we want each of the resulting route tokens to be close to realistic route segments. It is defined as

L𝑟1 =
1

𝑛

𝑛∑︁
𝑗=1

min

𝑖
∥z𝑖 − c𝑗 ∥22 . (2)

Finally, we add 𝐿1 regularization on the codebook for sparsity, i.e., to ensure that only a small subset of the

codebook vectors’ entries are activated during encoding. By encouraging sparsity, we improve the model’s

efficiency and enhance the interpretability of the route tokens, as each activated codebook vector will correspond

to more distinct and meaningful route context features. Thus, the full loss function for training the route tokenizer

is given through

L = 𝛾𝑐𝑜𝑛𝑡L𝑐𝑜𝑛𝑡 + 𝛾𝑐𝑎𝑡L𝑐𝑎𝑡 + 𝛾𝑏𝑖𝑛L𝑏𝑖𝑛︸                                     ︷︷                                     ︸
𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝜆𝐿1 ∥𝐶 ∥1 + 𝜆𝑟1L𝑟1︸               ︷︷               ︸
Regularization

+𝛽L𝑐 + 𝛾𝑝𝑟𝑜 𝑗L𝑝𝑟𝑜 𝑗 (3)

3.4 Transformer Backbone

Overview. We use the trained Route Tokenizer and add it as an additional tokenizer to the Transformer backbone

of an LLM, pretrained on natural language. Thus, we add the route tokens and three new special tokens to the vo-

cabulary of the Transformer backbone. We use the codebook vectors’ indices as route tokens, e.g., [route:0000],
and add them to the vocabulary. Additionally, we add a padding token, a beginning of route token [ROUTE], and
an end of route token [/ROUTE]. We extend the embedding table and the weight matrix of the output linear layer

of the model to match our new vocabulary size. To initialize the embedding table for the newly added route

tokens, we scale the corresponding codebook vectors to the order and magnitude of the text embeddings in the

embedding table and initialize the route context embeddings with it. For initializing the entries of the output

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 83. Publication date: September 2025.
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Fig. 3. Our whole Training Pipeline consists of four steps. First, we train the Route Tokenizer as the encoder of a VQ-VAE (see

figure 2), and attach it to a pretrained LLM. Then we train an MLP to project the route context embeddings into the same

subspace as the language embeddings, followed by fine-tuning the LLM for cross-modal understanding. Finally, we use an

instruction tuning step to improve route-context understanding and reasoning.

linear layer, we follow [24] and sample the new weights from a normal distribution with the mean and covariance

matrix of the original weights.

Due to the architecture of the VQ-VAE, embeddings of similar route tokens have a low Euclidean distance. On

the contrary, embeddings of semantically similar text tokens tend to have a high cosine similarity. To account

for these different subspaces, we add an MLP projection network after the route embedding table to align the

embeddings of the text tokens with the embeddings of the route tokens. The MLPs architecture follows [33].

Training. Building upon [28], we train the LLM for cross-modal understanding between routes and natural

language in three steps (see Figure 3) using multimodal datasets:

(1) Alignment of Route and Text Tokens: First, we train the embedding projection layer to learn a projection

from the modality embedding space, in this case, the codebook embedding vectors, into the LLM embedding

space [15, 34]. Thus, we freeze all model parameters except those in the embedding projection layer and

train the model using causal language modeling to “translate” route tokens to natural language.

(2) Multimodal Causal Language Modeling: Next, we freeze the projection layer’s parameters and train

the LLM’s parameters using causal language modeling (CLM), also known as next token prediction, on

a dataset of routes paired with textual descriptions. These natural language route descriptions are often

sparse, i.e., they refer only to a small subset of features for a small portion of the tokens per route. This

makes it challenging for the LLM to accurately attribute specific features to specific tokens within the

route. To simplify this attribution, we train the model to generate a feature description based on a single

route token at a time. This approach resembles a regression or classification task, depending on the feature

value the model is predicting.

(3) Multimodal Instruction Tuning: Finally, we fine-tune the LLM’s parameters on several route-related

tasks to improve its route-context understanding and cross-modal understanding. These tasks include the

generation of route descriptions or traffic reports, the sorting of route segments into chronological order,

and the interpolation of routes. Following [51], we add Chain-of-Thought (COT) examples to increase the

generalization capabilities, improve robustness, and improve the zero-shot reasoning capabilities of the
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Fig. 4. We build a Web Interface for RouteLLM, to enable easy and accessible interaction with the system. In the interface,

the user can select a route, and then interact with it via a chat interface.

model. We add COT triggers, such as Let’s think step by step, into the tasks, that force the model to split

them into smaller subtasks following the logical reasoning steps.

4 IMPLEMENTATION

4.1 Route Tokenizer

Following [28], we use residual networks as the Encoder and the Decoder networks of the VQ-VAE. The encoder

consists of a series of ⌊log(𝑚
2
)⌋ encoder blocks, each cutting the dimension of their input in half. The encoder

blocks consist of a 1D convolution and three residual blocks. The residual blocks consist of two 1D convolutions,

a batch normalization (BN) layer, and a ReLU activation function. All convolutional layers, except the last one,

output a feature map of 𝑑ℎ channels. The last convolutional layer of the encoder outputs 𝑑𝑒 channels. The decoder

consists of a series of ⌊log(𝑚
2
)⌋ decoder blocks, similar to the encoder blocks but in reverse. They consist of 3

residual blocks with dilation rates 9, 3, and 1, an upsampling layer that scales the input dimension by 2 using

nearest neighbor interpolation, and a 1D convolution. The last convolutional layer of the decoder outputs 1

channel. We use a smooth L1 loss as L𝑐𝑜𝑛𝑡 , a categorical cross entropy loss as L𝑐𝑎𝑡 , and a binary cross entropy loss

as L𝑏𝑖𝑛 . To address imbalances in the categorical features, we use class weights and label smoothing [46] in the

categorical and binary cross entropy loss. Finally, we use codebook resets for improved codebook utilization [40],

i.e. we periodically reinitialize a subset of the codebook vectors based on the distribution of the currently observed

input vectors.

4.2 Transformer Backbone

Base Model. We use a decoder-only architecture as the backbone of RouteLLM due to the recent popularity gain

of decoder-only LLMs and their widespread usage as chatbots, allowing us to build RouteLLM based on a wide
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range of pre-trained models. Specifically, we chose the instruction-tuned version of Mistral 7B [27]. The model

shows promising performance on LLM benchmarks, such as MMLU [22], HellaSwag [55] and WinoGrande [43],

and its comparably smaller size allows for local inference on consumer devices. We additionally reduce the

number of parameters and their memory consumption using Quantized Low Rank Adaptation (QLoRA) [19, 26],

with the rank set to 𝑟 = 16 and a scaling factor of 𝛼 = 16. After attaching the Route Tokenizer and extending the

model’s vocabulary, it comprises 33 027 tokens, 32 000 of which are text tokens, 1 024 are route tokens, and 3 are

special tokens (one route padding token, one begin of route token, and one end of route token).

Training. We train the projection layer for aligning the route token embeddings with the text embeddings

for 10 epochs using a batch size of 8 and a gradient accumulation of 16 iterations. We use a cosine learning rate

schedule with an initial learning rate of 1𝑒 − 3 and a warm-up period of 50 iterations. Next, we train the model

for 1 epoch using QLoRA in the Multimodal Causal Language Modeling step. We use a batch size of 8, a gradient

accumulation of 16 iterations, and a learning rate of 2.5𝑒 − 5 with a cosine schedule considering the first 3 % of

the iterations as warm-up period. Finally, we instruction-tune the model for 15 epochs using a learning rate of

2.5𝑒 − 5 with a cosine schedule and a warm-up period of 3 % of the iterations. We set the batch size to 4 and

accumulated the gradients over 8 iterations. Again, we only train the QLoRA adapters in the LLM.

4.3 Training Details

We implement the Route Tokenizer and RouteLLM using PyTorch [4] and train it with Hugging Face Transform-

ers [52] on an Amazon Web Service’s g5.12xlarge instance, equipped with four Nvidia A10G GPUs with 24GB

VRAM each. The alignment step took on average 34 hours, the Multimodal Causal Language Modeling step

took on average 45 hours, and the Instruction Tuning took on average 25 hours. We use QLoRA and FlashAtten-

tion2 [17] in all training stages except the alignment stage. We select the best model based on the validation score

for each training stage. Finally, the model is unquantized, by fusing the QLoRA adapters storing the parameters

in half-precision.

4.4 Interface for Inference from User Input

To use RouteLLM with user input, we create a web-based user interface using Gradio [1] and serve the trained

model using FastChat [57]. Figure 4 shows a screenshot of the interface. First, users enter a custom start and

endpoint for a route. The system will then automatically calculate the shortest route between these two points

as a sequence of edges in a street graph. When using RouteLLM in an in-the-wild application, this data would

be typically obtained from real-time GPS sensors and a navigation system. The edges are then annotated with

the context features necessary for RouteLLM by retrieving the data from web APIs. In a real-world application

without internet access, the data could also be obtained through locally hosted APIs that store a contextualized

road graph, or inferred from camera images. Still, it has to be assured that the utilized feature values, such as the

weather categories (e.g., cloudy or sunny), align with the ones that were used for training RouteLLM. Additionally,

missing feature values might need to be filled, e.g., through forward-filling. Finally, the complete sequence of

route context is tokenized through our Route Tokenizer. Users can then start to ask questions on the route and

leverage RouteLLM’s route context reasoning capabilities.

5 DATASETS

We propose two datasets for training the Route Tokenizer and RouteLLM : ContextualRoutes and LabeledRoutes. In
the following, we present the creation strategy and their details.
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5.1 Context Feature Selection

For creating the datasets, we need to describe route context through a set of feature values. These features could

include data from various sources describing diverse aspects of the scenes, e.g., road states, weather information,

or the landuse around the location. Further, these features can either vary over time (dynamic context) or be

constant (static context). In order to prevent a costly, laborious, and irreproducible data collection process, we opt

to include only features that can be retrieved through online APIs or derived from these. Such features include

elevation, the incline of a road segment, the traffic situation, or the expected travel along a road segment. Further,

we refrain from using images, e.g. retrieved from StreetView databases, for three reasons. First, using image

data limits the generalization ability of a model trained on its basis, as large areas on Earth are not covered

with this data, and some covered areas might be incompatible as the cameras used to capture the images differ

too much from the ones used to capture the images in the training dataset. Second, it comes with significant

privacy issues as images may capture identifiable individuals, vehicles, or private properties, raising ethical and

legal concerns regarding data usage. And third, processing and storing large-scale image data is computationally

expensive, requiring substantial resources for both storage and model training. Thus, we decide to include

numerical, categorical, and boolean features from four clusters: temporal features, weather features, road features,

and traffic features.

5.2 ContextualRoutes
For training the Route Tokenizer, we require a dataset that comprises a variety of route context features and is

sufficiently large to train a VQ-VAE. To these means, we first sample a fixed set of routes, annotate it with static

context features, and then enrich them with dynamic features several times. This allows us to capture the same

route with potentially different dynamic feature values at different times.

We define 18 bounding boxes from which we sample the routes (see Figure 11 for an overview and Table 2

for the precise positions). The bounding boxes include the ten biggest cities in Germany, two rural regions

in Germany, and four European cities outside Germany. Their areas range from approximately 750 km
2
to

approximately 17800 km
2
. For each bounding box, we retrieve a road graph from OSMnx [13], add elevation data

from the Japan Aerospace Exploration Agencies (JAXA) AW3D30 global digital surface model
4
, and calculate

the Menger curvature and heading for each edge. Additionally, we sample a map annotated with usage areas

(residential areas, farmland, or construction sites) for the same bounding box using the OSM landuse key, and

assign each edge in the road graph the landuse of the area it is closest to.

From this contextualized street graph of each location, we randomly sample a set of nodes, divide them into

start and destination nodes, and compute the shortest route between each start and destination node. To address

the potential issue of resulting routes being too similar, we filter out redundant routes using the Hausdorff

distance [12, 42]. The Hausdorff distance between two routes is defined as the maximum Euclidean distance from

any point on one route to the closest point on the other. After this filtering process, for Stuttgart, only 0.02% of

the Hausdorff distances between two routes are less than 1km, and on average, there is only one other route with

a Hausdorff distance lower than 1km per route. Additionally, we discard all routes with a total length of less than

1 kilometer.

We randomly select these contextualized routes at arbitrary times across the day and add dynamic features

from Azure Maps through map tiles
5
. These dynamic features include traffic flow, road incidents, and weather

information. Since we use a different underlying map provider than Azure Maps, we match our route segments

with the route segments in the tile. We use a buffer of 5 meters around each route segment for the matching

process. The traffic flow tiles include the feature delay, which indicates the fraction of the free flow speed at

4
https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm, last accessed July 16, 2025

5
https://learn.microsoft.com/en-us/rest/api/maps/render/get-map-tile, last accessed July 16, 2025
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Fig. 5. We visualize the distribution of selected features from the ContextualRoutes dataset. The plots demonstrate the variety

of route context present in the dataset.
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which the traffic is currently moving. We use this value to calculate the current traffic speed and the current

travel time along each route segment. Based on these travel times, we then retrieve the weather at each route

segment for the estimated time of arrival. We sample the weather every 250 meters to reduce the number of

requests, and save the current server time and date as the route timestamp. Finally, we encode the local time as

sine and cosine components in order to account for the periodicity of the signal [30].

The final ContextualRoutes dataset consists of 324 802 routes with a total length of 8 915 625.3 km. Each route

segment is annotated with 39 context features, 14 of which describing the road state, 3 describing temporal

aspects, 7 describing the weather, and 15 describing the traffic. We provide an overview of all features with a

description in Table 3 and visualize the distribution of selected features in Figure 5.

5.3 LabeledRoutes
WhileContextualRoutes comprises routes annotated through context features, we additionally require amultimodal

dataset containing both routes and natural language to train RouteLLM for cross-modal understanding. For this,

we build upon the ContextualRoutes dataset and annotate the routes with labels using two different strategies.

First, we use a template-based automated annotation for simple tasks; second, we use a teacher model to generate

labels that require reasoning based on the route context.

Templates are particularly effective for straightforward questions about route characteristics, like the length of

a route. For example, to generate a response for the question How many bridges are along this route?, we evaluate
the correct label value based on the underlying route and insert it into a label template, e.g., There are [n] bridges
along this route. To increase the diversity of samples, we create multiple templates per question and answer. The

features the questions refer to are randomly selected, except for categorical features with a strong class imbalance.

For example, when dealing with highways, the selection process adjusts for feature variability, as categories like

’highway’ could otherwise oversample the answer ’no’ for rare classes.

Tasks that involve reasoning, diverse language, or feature abstraction cannot be annotated using simple

templates. Therefore, as a second strategy, we use a teacher model to annotate the routes with diverse natural

language labels for such tasks, e.g., evaluating route beauty or summarizing weather conditions. The teacher

model is prompted with style guidelines for the response phrasing and a brief description of the route features.

By varying the style instructions, we increase the diversity of the generated labels. We query the teacher model

with a randomly selected question and a route description generated through a template that describes the

features of the route segment by segment. As we found the teacher model tending to mirror the style of the

route descriptions (probably due to their length), we limited its access to detailed information to generate more

natural responses. For instance, instead of providing exact numerical values for precipitation, we categorize the

precipitation levels into broader natural language terms.

We form three suitable datasets, one for each fine-tuning step of RouteLLM, based on ContextualRoutes and the

annotation strategies introduced above.

(1) CausalSingleToken This dataset uses template-annotated labels and is used for the first training stage,

i.e., the alignment of the route and text tokens. For each token in the route vocabulary, we first randomly

sample 500 route segments from the ContextualRoutes dataset that are represented by it and then randomly

select a feature. Then, we annotate the segment with a template-based label utilizing the selected feature’s

value, e.g. “The travel time is 0.7 s”. In total, this dataset contains 512,000 samples, out of which 407,212 are

used as training samples, and 104,788 are used as validation samples.

(2) RouteInstruct: We create a multimodal, multi-turn (i.e. multiple consecutive utterances per conversation),

multi-task dataset for instruction tuning using a mixture of template and teacher annotated labels. An

overview of the corresponding tasks is shown in Table 4. The final dataset comprises 11 936 conversations
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[ROUTE][route:0816][/ROUTE] The 
travel time is 0.7s.

CausalSingleToken

Question: Considering the 
potential traffic incidents along 
this route, how would you 
evaluate its overall beauty or 
appeal to most drivers? 
[ROUTE][route:0856]....[route:046
4][/ROUTE]

Answer: I’d say it’s quite 
attractive, especially for those 
who appreciate nature ...

RouteInstruct

[ROUTE][route:0856]...
[route:0464][/ROUTE] 
The route, covering 12.9 km in 
15.38 minutes, consists of 
various street types ...

Route Decriptions

Template-based Annotation Teacher-based Annotation

OSMnx

Azure Maps

Time

Template- & Teacher-based Annotation

324 802 Routes  ·  8.915.625,3 km  ·  39 Context FeaturesJAXA

ContextualRoutes

Fig. 6. We annotate the routes of the Contextual Routes dataset with multiple labels to create the LabeledRoutes dataset. The
associated tasks require three different sets of skills: feature extraction, route reasoning, and route understanding.

consisting of 16 052 turns, of which 5 470 require feature extraction, 1 748 require route understanding, and

8 834 require route reasoning.

(3) Route Descriptions: Finally, we create a route question-answering dataset using the textual descriptions

from RouteInstruct. All of the samples in the dataset are annotated using a teacher model. The dataset

differs from the CausalSingleToken dataset since it requires the model to predict the feature values of an

entire route, thereby requiring the model to condense the description into a few sentences, and thus forcing

the model to extract essential route characteristics since it cannot describe every feature value of each

token. It contains 6,561 samples, of which 4,262 are training samples, 875 are validation samples, and 1,412

are test samples.

5.4 Generalization of the Dataset to Other Regions on Earth

Since RouteLLM relies on route context tokens learned during training the Route Tokenizer, its ability to generalize
to unseen locations depends on the diversity of feature distributions in our dataset. Thus, to create the datasets,

we sampled routes from 18 different bounding boxes across Germany, France, Great Britain, and Iceland. These

bounding boxes comprise a wide range of landscapes, from urban city centers to rural roads and mountainous

regions. Additionally, this accounts for varying traffic patterns, including roundabouts, large intersections in

high-density metropolitan areas, and windy rural routes in sparsely populated areas to capture diverse contextual

features. To assess if the routes cover the necessary feature variance, we visualize the feature values and their

combinations in Figure 5. Our analysis reveals long-tail distributions, with feature values spanning nearly the

entire range of possible values defined by OpenStreetMap. While this indicates a broad coverage of contextual

features within the sampled regions, we acknowledge that the dataset lacks representation of certain global areas
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such as Africa or Southeast Asia, which may show different feature distributions, e.g., for the temperature feature.

To facilitate future extension of the dataset, we released the source code used for sampling the routes
6
. Within

the current geographic scope, however, the diversity of route features is sufficient for the Route Tokenizer to learn
tokens for a wide range of value combinations, potentially enabling generalization to unseen but structurally

similar regions beyond the original bounding boxes. To validate this in the following model evaluation, we used

routes sampled from different bounding boxes for testing than those used during training.

6 EVALUATION

We evaluate to what extent RouteLLM learns a cross-modal understanding following our design and training

strategy. We first evaluate the Route Tokenizer regarding its ability to encode route segments into semantically

meaningful embeddings and thus provide rich input to RouteLLM. Then, we evaluate RouteLLM as an end-to-end

system.

6.1 Route Tokenizer
Route Tokenizer’s capability to learn semantically meaningful and useful codebook vectors is determined through

the following two criteria:

C1 Feature Clustering: Segments with similar features should be close to each other in the codebook space

C2 High Feature Expressiveness: The codebook should have a high expressiveness regarding route context

features to cover the entire feature space, e.g, there should be at least one codebook vector per category for

categorical features.

We start by visually inspecting the codebook vectors learned by the Route Tokenizer and then quantitatively

analyze the encoding and reconstruction process.

6.1.1 Qualitative Analysis. We reduce the number of dimensions from the codebook vectors to 50 using a principal

component analysis (PCA) and then reduce the remaining dimensions to 2 using a t-distributed stochastic neighbor

embedding (t-SNE) [50]. Figure 7 visualizes the t-SNE embedded codebook vectors colored by different features.

We observe that the values of the categorical feature road_type distinctly separate the clusters in the codebook

space. The same applies to the landuse feature, where only one type of landuse is assigned to most clusters,

leading us to conclude that they are the main distinguishing features for the model. We attribute this cluster

structure to the high weight of the categorical features in the loss function. Binary features, such as the oneway
and weekday features, seem clustered within these bigger clusters. Interestingly, all traffic incidents are located in

one cluster, with road types in this cluster mostly being roads outside of cities, such as motorways or trunk roads.

Additionally, the delay feature value of most codebook vectors in that cluster shows an apparent reduction of

the traffic speed compared to the free flow speed. The codebook vectors in that cluster indicate a high chance of

incidents and a high incident magnitude. Thus, Route Tokenizer can learn the correlation between such traffic

features. On the other hand, we find some categories missing. For example, none of the codebook vectors

represents bridges, tunnels, thunderstorms, or variable maximum speed, leading to a loss of expressiveness.

Similar problems can be observed for numerical features, such as the temperature or the precipitation. The range

of the recorded weather phenomena is limited in the dataset because the recording only spans over one week in

comparatively few regions, leading to a biased dataset. As a result, the temperature feature encoded through

the codebook vectors ranges between approximately 3 and 17 degrees Celsius. The times range from 9 a.m. to 6

p.m. on a weekday, resulting in the model being unable to express a traffic incident on the weekend or at night.

6.1.2 Quantitative Evaluation. Next, we evaluate the VQ-VAE’s performance by its ability to reconstruct the

original feature values of the route segments from the testset of ContextualRoutes. We report the mean average

6
https://github.com/verena-hallitschke/routellm
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Fig. 7. Visualization of the Codebook Vectors through a t-SNE Embedding colored by different features.

error (MAE) for numerical features in Table 1 and show confusion matrices for binary and categorical features in

Figure 12. Overall, the error tends to be moderate or high for most features, while weather and traffic incident

features show a lower error value. Further, we find that the model cannot precisely reconstruct the daytime but

can estimate a range (morning, noon, evening, and night). We also find the model to be incapable of reconstructing

features that describe the segment’s geometrical structure, such as the grade or heading.

We find this due to the quantization significantly reducing the number of possible values that can be encoded

through the codebook vectors for each feature. For correlated features, the codebook vectors only need to store a

small subset of all possible value combinations without losing expressiveness. Thus, the higher the correlation of

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 83. Publication date: September 2025.



RouteLLM: A Large Language Model with Native Route Context Understanding to Enable Context-Aware Reasoning • 83:17

Table 1. We report the VQ-VAE reconstruction for numerical features as Mean Average Error (MAE) for the three feature

categories time and weather, traffic and road properties.

Time and Weather Traffic Road Properties
Feature MAE ↓ Feature MAE ↓ Feature MAE ↓

cos_time 0.4 current_speed 19.9 kph curvature 0.073 m−1

sin_time 0.31 current_travel_time 1.5 s grade 0.043

time 2.65 h delay 0.056 heading 90
◦

cloudCover 15.4 % free_flow_speed 12.9 kph landuse_distance 5.8 m

precipitation 7.5 dBZ incident_certainty 0.0083 lanes 0.45

temperature 2.1◦ C incident_delay 2.5 s length 20.27 m

windGust_speed 6.3 kph incident_distance 0.006 m

wind_direction 39
◦ incident_magnitude 0.004

wind_speed 3.4 kph speed_kph 12.4 kph

travel_time 1.2 s

two features, the more distinct values can be represented in the codebook space with the same number of codebook

vectors. On the other, the codebook vectors should encode all possible feature combinations for uncorrelated

features such as length and the precipitation. We argue that due to the high correlation of the features in

the weather and traffic incident categories, their effective feature resolution is significantly higher than those

in other categories. Accordingly, we assume that the model’s performance on binary and categorical features

is superior to that on numerical features due to their already limited value space. Supporting this hypothesis,

we find the reconstruction quality to depend on the number of feature categories in the training dataset. For

example, the prediction accuracy is high for features with an approximately balanced number of samples per

category, e.g. oneway, with true-positive rates of consistently over 80 %. On the other, features with strong class

imbalances, e.g. the bridge feature, suffer from worse reconstruction.

6.1.3 Ablations. Next, we present ablation studies of the most important hyperparameters of the Route Tokenizer.

Codebook Dimension. Increasing the codebook dimension impacts the amount of information the codebook

vectors can encode and, therefore, the amount of information it can pass to the decoder. Using smaller codebook

vectors leads to a smaller model size andmore efficient processing. However, it can also lead to a loss of information

and, therefore, worse decoding performance. We compare the validation reconstruction loss between models

using a codebook dimension of 64, 512, and 4 096. We find that increasing the codebook dimension from 64 to 512

leads to a slight performance gain, while the increase from 512 to 4096 leads to a slight performance decrease.

Still, we decide to use codebook vectors of size 4096, due to the base model used for RouteLLM (Mistral) using

embeddings of this size. Matching the codebook dimension of the Route Tokenizer with the embedding dimension

of RouteLLM, allows us to use the codebook vectors directly as token embeddings.

Codebook Size. The influence of the quantization heavily depends on the number of codebook vectors. An

increase in codebook vectors increases the values the codebook space can represent, thus potentially adding

representations of undersampled classes that could not have been expressed before. In turn, the increase might

also lead to more representations of oversampled classes, thus resulting in a codebook space very dense in

areas with high dataset frequency and sparse in regions with low dataset frequency. We compare the validation

performance of the model using 512, 1 024, and 2 048 codebook vectors. We find that the model collapses when

using 512 codebook vectors. Further, we find that increasing the number of embedding vectors slightly improves
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the model’s predictive performance. In our experiment, the model introduces codebook vectors for the bridge
feature when increasing the number of codebook vectors to 2 048, indicating that increasing the number of

codebook vectors could improve the prediction performance on undersampled categories. On the other, an

increase in codebook vectors implies an increase in route tokens, making subsequent training of an LLM with

these tokens more complex. We decide to use a codebook with 1, 024 codebook vectors, trading off predictive

performance with embedding space redundancy and LLM training complexity.

Hidden Dimension. A higher hidden dimension results in a wider VQ-VAE network, thus increasing the risk

of overfitting, while a lower hidden dimension increases the risk of underfitting. We compare the model’s

validation performance with hidden dimensions of 16, 32, 64, and 128. The hidden dimension increases the

validation performance on binary and categorical features, with the binary feature performance showing the

biggest performance gain. Notably, with a hidden dimension of 128, the model learns embeddings of features

it could not learn with the lower dimensions, e.g., embeddings for the bride and tunnel features. There is no
significant change in the prediction performance for numerical features.

Auxillary Losses. We use an 𝐿1 regularization loss on the codebook to encourage sparsity, as we expect this to

lead to more specialized and diverse codebook vectors. However, this increased specialization comes at the risk

of reduced codebook utilization. Thus, we compare the effect of three different regularization techniques:

A: No regularization, i.e. neither 𝐿1 regularization nor 𝑟1 and 𝑟2 losses

B: regularization through 𝑟1 and 𝑟2 losses

C: 𝐿1 regularization and 𝑟1 and 𝑟2 losses

We find the precision and recall of the binary features to decrease in both scenarios with reduced regularization

(A and B). On binary features, the recall decreases from 0.68 (C) to 0.58 (B) and 0.60 (A) respectively, and the

precision decreases from 0.60 (C) to 0.54 (B) and 0.56 (A). We do not observe an effect of regularization on the

numerical features.

6.1.4 Conclusion. In summary, we find the codebook vectors to be meaningful for most features, while their

expressiveness is limited due to missing feature values and missing value combinations for some features.

Specifically, we find the route tokens do not encode information about bridges, tunnels, or whether the maximum

speed is variable. Further, they encode only coarse time, traffic flow, and road geometry information. On the

other, the route tokens encode fine-grained information regarding weather, traffic incidents, road types, and the

direction of traffic. Thus, based on the prediction results on the test set and the visualization of the codebook

space, we conclude that even though not optimal, the learned codebook vectors are of sufficient quality for our

proof of concept to train the first route context-aware LLM.

6.2 RouteLLM
We evaluate RouteLLM’s generations both manually and automatically. For the manual evaluation, we randomly

select routes from the training and validation set and experiment with diverse tasks from the RouteInstruct set

as well as new and unseen tasks. Since manual evaluation is slow, we additionally use gpt-4o
7
to automatically

evaluate the model’s generations on RouteInstruct’s validation dataset.

6.2.1 Manual Evaluation. When interacting with RouteLLM, we find that the model can understand most

questions and generate fluent answers. We present exemplary conversations with RouteLLM in Figure 9. In the

process of learning cross-modal understanding between text and routes, it seemed to keep its world knowledge

since it is still able to answer general questions such as What is the Pythagorean theorem? or understand foreign

7
https://openai.com/index/hello-gpt-4o/, last Accessed July 16, 2025
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Fig. 8. Evaluation for the different Tasks in LabeledRoutes

languages, even though LabeledRoutes only contains English samples. Moreover, RouteLLM demonstrates zero-

shot reasoning capabilities on route context data, for example, by reasoning whether a route is suitable for

noise-averse passengers, a question not represented in the training dataset.

6.2.2 LLM-based Evaluation. Next, we evaluate the generations of RouteLLM using gpt-4o. Since RouteLLM is

instruction-tuned with a maximum route length of 256 tokens, we only include samples from the validation

dataset within this limit. Following [57], we instruct gpt-4o to score each generation on a scale of 0 to 10. We

provide the overall scores and an overview of the mean scores per feature in Figure 8. The results of the automatic

judgment generally align well with our findings when interacting with the system. The mean score across all task

categories is 6.23, with the mean score for the feature extraction tasks slightly above the total average at 7.02. The

scores of the Route Reasoning and Route Understanding tasks are slightly lower at 5.97 and 4.90, respectively.

When comparing the gpt-4o scores, the tasks with the highest scores are the tunnel-task, lightning-task,
and incident-reported-task. We assume that the class imbalance of those features leads the model to predict

a constant value for those features while still receiving a high score. On the other, the length task, long
description task, and the reorder task rank the lowest. Solving the reorder task requires strong route
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Human: In one sentence. Is this route beautiful?

RouteLLM: sure, it’s mostly flat, has some green spaces and a few residential areas along the way, so it

could be quite scenic. Just remember to drive carefully and enjoy the ride!

Human: Is it cloudy?
RouteLLM: Great question! It seems like the weather is going to be quite pleasant for your journey. There’s

no rain expected, and the sky will be mostly cloudy with a temperature of around 17.4 degrees Celsius. The

wind will be blowing at around 8-9 kph, with gusts reaching 13 kph. So, you should have a comfortable trip

without any rain to worry about.

Human: What is the vibe of the route?

RouteLLM: Great question! The vibe of the route you’ve described seems to be quite diverse and dynamic.

It includes a mix of commercial, residential, and green or recreational areas. The route also features a variety

of road types, such as primary roads, residential roads, and links to/from primary roads. The speed limits

vary from 29.50 kph to 50.00 kph, and the number of lanes changes from 1 to 3. The journey is relatively

short, at 4.11 km, an d should take around 5.22 minutes. Overall, it seems like a vibrant and interesting

route that offers a glimpse into the different facets of the area.

Human: How’s the weather today?
RouteLLM: Great question! Today’s weather seems to be quite pleasant for a journey. Throughout your

trip, you can expect clear skies with a temperature of around 11.1 degrees Celsius. There won’t be any rain,

and the wind will be blowing at a moderate speed of 6.0 kph, with gusts reaching 12.0 kph. Enjoy your

journey and make the most of the good weather!

Human: I am scared of loud sounds. Is this route suitable?

RouteLLM: The route you’ve chosen seems suitable for someone who is scared of loud sounds. Most of the

journey is through residential areas and green or recreational areas, which should provide a more tranquil

atmosphere. The speed limits are relatively low, so traffic noise should also be minimal. The road is mostly

flat with gentle curves, making for a smooth drive. The weather conditions are also favorable, with no rain

and mostly cloud skies, which should contribute to a comfortable journey.

Fig. 9. Examplary Conversations with RouteLLM.

structure understanding, the length task and the long description task require the model to extract and

report exact feature values from the route, explaining the comparatively low score.

6.2.3 Conclusion. Overall, RouteLLM demonstrates good performance in feature extraction tasks, with a mean

score of 7.02, although it sometimes struggles with the retrieval of exact values. It achieves moderate performance

in Route Reasoning tasks, averaging 5.97, reflecting a general understanding of route-related questions. Similarly,

it shows reasonable capability in Route Understanding tasks, but reveals a limitation in structural comprehension,

particularly in the reorder task. This task’s lower score indicates that while RouteLLM can grasp contextual

route information, it faces challenges in deeper structural understanding.
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Fig. 10. Participant ratings and corresponding statistics for the Perceived Intelligence questionnaire. We compared RouteLLM

against Mistral, the foundation model it builds upon, to isolate the effect of our route tokenizer and training schema. Using

only route tokens, RouteLLM achieved performance on par with Mistral that is provided with a full step-by-step textual

description of the route. Hence, the differences across dimensions were not statistically significant.
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6.3 Comparative User Study

6.3.1 Apparatus. We evaluate the usefulness of conversations with RouteLLM and its perceived intelligence in a

comparative in-the-wild user study. Thereby, participants evaluated conversations with RouteLLM and another

baseline system about a route. Participants did not know which system they were interacting with at which time.

The following Systems were part of the study:

• First, RouteLLM, the first LLM with native, i.e., token-level, route-context understanding developed in this

work.

• And second Mistral, the LLM used as base model for RouteLLM. In the study, we encode the route context

as text and feed it to the network as additional input besides the user prompt.

We decided to use Mistral as the baseline model for this study, as it is the foundation model RouteLLM builds

upon. Hence, comparing RouteLLM against it allows us to isolate the effect our proposed route tokenizer and

training schema have on the model’s performance. To input a route into Mistral, we first merge similar segments

of the route and summarize each chunk using a template sentence. Thereby, we identify breakpoints by threshold

or category changes, and thus compute aggregate statistics, e.g., mean or sum, per chunk to populate the template

sentence. The system prompt together with and exemplary route description are shown in the Appendix A.4.

As previously explained, this form of encoding of routes is inefficient. Thus, we limit the routes’ lengths to

256 tokens in this study, so that the textually encoded routes still fit the context length of Mistral. Compared

to RouteLLM, Mistral does have an advantage in this study, as the task of answering questions about the

route comes down to finding the right text in the prompt and generating an answer from it. Still, we compare

RouteLLM against this baseline, as it can serve as an upper bound for its performance. If our concept of enabling

route-context awareness through route tokens works well, RouteLLM can extract the necessary information to

answer user queries from it, comparable to extracting the information from the prompt as Mistral does, and

thus, RouteLLM should be able to achieve comparable performance to Mistral.

6.3.2 Procedure and Design. Before starting the study, participants gave their informed consent. Next, we

collected basic demographic data, such as self-identified gender, age, familiarity with-, usage of-, and attitude

toward generative AI systems. At the beginning of the study session, participants were explained that the goal of

the study was to explore the route context understanding of the systems and the usefulness of their responses.

They were not told how the systems work. Next, we asked the participants to give the start- and end-point of a

route they are very familiar with, for example, their way to work. This was to ensure that they could evaluate

the factual accuracy and usefulness of the answers given by the systems to queries about the route. We showed

the participants two examples of potential questions they could ask, i.e., questions that require route context

understanding, and two examples of questions that might not be asked, i.e., questions that require retrieval of

non-contextual information. The examples are shown in the Appendix A.5. Then, we started the first trial, where

participants interacted freely for 8 minutes with the first system. Immediately after the interaction, participants

filled out a questionnaire asking them about the perceived intelligence of the system [6]. Further, they were

asked to rate the answers given by the system in terms of their factual accuracy, usefulness, and overall quality

on a 7-point Likert scale. Finally, they had the chance to also give qualitative feedback as free text input. This

procedure was repeated once per system. After each trial, participants were asked if they needed a short break.

After finishing the questionnaire for the second system, participants were asked which of the two systems they

would prefer to use. The whole session took approximately 30 minutes.

The experiment was a one-factor within-subjects design. The independent variable was the System with two

levels RouteLLM and Mistral. System was counter-balanced between subjects using a Latin square to account

for order effects.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 83. Publication date: September 2025.



RouteLLM: A Large Language Model with Native Route Context Understanding to Enable Context-Aware Reasoning • 83:23

6.3.3 Participants. Sixteen volunteers were recruited via a call for participation, eight of whom self-identified

as male, eight self-identified as female, and none wished not to answer. Their ages ranged from 21 to 30 years

(mean=26.50, SD=3.20). None of the participants had any prior experience with the system before the study. All

participants reported to be familiar with generative AI systems (8 Agree, 8 Strongly Agree) and the majority

stated to be frequent users of them (1 Disagree, 1 Slightly Agree, 5 Agree, and 9 Strongly Agree). Further, most

participants agreed that AI systems in the context of car rides are important (1 Disagree, 1 Slightly Disagree, 1

Neutral, 3 Slightly Agree, 9 Agree, 1 Strongly Agree).

6.3.4 Quantitative Results. The measures of all 7-point Likert results were analyzed using Friedman’s test.

Posthoc comparison was conducted using a Wilcoxon Signed-Rank test with Holm’s sequential Bonferroni

procedure [25]. We found RouteLLM to perform on par with Mistral across all four dimensions of the perceived

intelligence questionnaire, i.e. there was no significant effect of System on Competence (Mistral-Mean: 4.94
vs RouteLLM-Mean: 4.94, W = 42.5, p = .86), Knowledge (Mistral-Mean: 4.81 vs RouteLLM-Mean: 4.81, W =

38.0, p = .97), Responsibility (Mistral-Mean: 5.19 vs RouteLLM-Mean: 5.38, W = 35.0, p = .78), and Intelligence

(Mistral-Mean: 4.80 vs RouteLLM-Mean: 4.88, W = 31.0, p = .89). We visualize an overview of the results of the

perceived intelligence questionnaire in Figure 10. Additionally, participants ratings indicate that RouteLLM’s

performance was on par with that of Mistral as there was no significant effect of System on the Factual Accuracy

(Mistral-Mean: 4.75 vs RouteLLM-Mean: 5.56, W = 20.5, p = .15), the Usefulness (Mistral-Mean: 4.38 vs

RouteLLM-Mean: 4.75, W = 29.0, p = .45), and the Overall Quality (Mistral-Mean: 5.19 vs RouteLLM-Mean:
5.12, W = 38.5, p = 1.0) of the answers. Finally, out of 16 participants, nine stated that they preferred RouteLLM

over Mistral, six preferred Mistral, and one couldn’t tell.

6.3.5 Qualitative Results. We conducted a thematic analysis following the approach outlined by Braun et al. [14]

for the qualitative feedback the participants gave on RouteLLM. In a team consisting of two coders, both

researchers conducted open coding of the data individually. Finally, the codes of both researchers were grouped

and the following four key themes established: Information Quality, Safety Boundaries, Conversational Behavior,
and Feature Requests.

• Information Quality: Participants appreciated the depth and richness of the system’s responses. De-

scriptions ranged from “Very detailed” [P2] and “detailed and very thorough” [P12] to “great additional
information” (P14), emphasizing the perceived comprehensiveness of the answers. Further, the users deter-

mined the answers generated by RouteLLM to be mostly correct. They described the answers as “precise”
[P14], “factually correct” and with “truthful facts” [P4].

• Safety Boundaries: Participants highlighted the system’s cautious behavior, especially regarding safety-

related queries. Statements like “very cautious” [P1], “focused on safety” [P2] reflected a positive perception,

while others perceived it as limiting the usefulness: “Not helpful with questions about security” [P10].
• Conversational Behavior: The system’s style was perceived as professional and pleasant (“Language was
casual and pleasant” [P16]; “eloquent” [P4]), but sometimes repetitive or unclear (“it repeated ‘That’s a good
question’ multiple times” [P10]; “Answers in better format needed” [P6]).

• Feature Requests: Some participants expressed a desire for additional or specific information, as reflected

by P8: “In some cases, information was missing”.

6.3.6 Summary. Thus, overall, the results show that RouteLLM can understand information encoded in the route

tokens and provide its users with knowledgeable answers at the same level users are used to from interacting

with LLMs. In order to encode the route context in a textual format for the Mistral baseline, we had to limit the

route lengths to 256 tokens. A key advantage of RouteLLM for in-the-wild applications is that it can support

much longer routes as its token-level route context understanding allows to input routes in a much more compact

and scalable representation. Moreover, both the quantitative and qualitative results highlight that users overall
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perceive RouteLLM’s answers as factually accurate, helpful, and professionally phrased, further confirming the

model’s practical applicability for real-world route-based reasoning tasks.

In this study, we chose Mistral as the baseline model because it is the foundation upon which RouteLLM is

built. This design choice enables a controlled comparison that isolates the effect of our proposed route tokenizer

and training schema on model performance. Importantly, the core concept of RouteLLM, introducing a dedicated

route tokenizer for structured context representation, is agnostic to the underlying foundation model. Therefore,

it could be integrated with more recent language models such as DeepSeek. RouteLLM performing on par with

Mistral in our study, even though Mistral was prompted with detailed, step-by-step textual route descriptions,

shows that LLMs can be used to understand route context with a dedicated route tokenizer. While we expect our

methodology to generalize to larger and more capable foundation models, an evaluation of this should be part of

future work.

7 DISCUSSION

7.1 Failure Cases

Overall, we can report that RouteLLM is capable of understanding route context and zero-shot reasoning based on

the world knowledge encoded during pretraining. Still, it occasionally suffers from inaccuracies, hallucinations,

fluency degenerations, or unrelated responses. Thus, we find that further advances in cross-modal understanding

between route-context and text will become necessary. During our evaluations, we found the following most

prominent failure cases of RouteLLM:

• Feature Value Inaccuracy: Some of the model generations contain inaccurate route context feature

values. The level of inaccuracy ranges from minor errors, such as underestimating the temperature by a

few degrees, to major errors, such as giving a route length that is multiple kilometers longer.

• Hallucinations: Occasionally, the model answers the original question but then follows with any unnec-

essary or false information. For example, the model correctly responds that there are bodies of water along

the route but then includes recreational and commercial areas, which the route does not pass through.

• Fluency Degeneration: Generally, the model has a high fluency, and the generated responses are coherent.

However, the model’s answers occasionally suffer from a degeneration of language fluency. In those cases,

the responses can be wrongly formatted, have wrong or confusing wording, or sound unnatural. We also

find that the model tends to start responses with phrases such as Great! or Great question! or I’m glad you
found these suggestions helpful! even if they do not relate to the previously asked question.

• Unrelated Responses: A few model responses were not related to the user prompt after all. This includes

the model ignoring parts of the user prompt, the model answering a different route-related question, or

the model generating a coherent but unrelated response. For example, the model repeatedly generated the

answer Great choices! These ideas will surely make for an unforgettable 10-year-old’s birthday celebration. in
our evaluation. The mentioned responses occur mainly if the input routes are longer than 256 tokens or if

the user prompt contains questions the model cannot answer.

7.2 Challenges

RouteLLM demonstrated emerging abilities to reason based on route context. While our analysis also revealed

clear limitations, we see it as a first step towards- and future benchmark for route context-aware systems with

reasoning capabilities. Based on the evaluation results and the identified failure cases, we identify three key

challenges for future research on route-context-aware LLMs:

Challenge 1: Routes are a Unique Modality that Requires Special Attention. Our proposed Route Tokenizer and
RouteLLM are heavily inspired by MotionGPT [28], a model that demonstrated cross-modal understanding
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between human motion and natural language. However, there are key differences between human motion and

routes, leading to the approach being not fully transferable to routes. When expressing a human motion in text,

no underlying feature values must be exactly repeated. The numerical values of the joint positions and rotations

are irrelevant to the LLM, which instead focuses on the general motion. On the other, the LLM must be capable

of extracting the exact underlying feature values for routes. While there are abstract concepts that the model can

gather from the feature values, they are not sufficient to perform most of the interactions a user would request,

such as calculating the length of a route. The reliance on the exact feature values makes the LLM sensitive to

variations of the input features, where a small error in the route tokenizer results in a high error in the LLM

outputs or even an utterly incorrect response. We believe that input sensitivity, combined with the need for

exact feature values and lossy route tokens, is the primary reason for incorrect feature values in RouteLLM’s
generations.

Thus, a primary challenge lies in the inherent sensitivity of route data. Routes are composed of precise

numerical features, such as distances, road conditions, and traffic, that require accurate encoding and decoding to

maintain fidelity. Small errors during tokenization can lead to significant inaccuracies in model responses, which

is problematic for user interactions that rely on exact details. This demand for precision makes cross-modal

understanding of routes particularly challenging, as traditional LLMs are not designed to handle high sensitivity

to input features. Overcoming this challenge requires developing robust tokenization methods that preserve the

integrity of route data without introducing errors that could mislead the model’s output.

Challenge 2: LLMs Lacking Mathematical Capabilities Are Problematic when Dealing with Routes. A subset of

tasks on numerical features requires the model to be capable of mathematical reasoning, e.g., calculating the

total length of a route or finding the maximum temperature along a route. Compared to the base model used

in this work (Mistral 7B), newer, larger models perform significantly better on mathematical benchmarks such

as MATH [23] and GSM-8K [16]. Still, these models’ mathematical abilities are limited, which might lead to

inaccurate or incomplete responses on route-context based tasks. This inability potentially limits the models’

practical utility when dealing with contextual routes. Improving the mathematical reasoning of LLMs is crucial

to ensuring that they can reliably process and interpret numerical route features, thus enabling more effective

and accurate user interactions.

Challenge 3: Adding Additional Context Features Is Challenging. The architecture of RouteLLM relies on tok-

enization for both text and route context. For natural language, a Byte Pair Encoding (BPE) tokenizer converts text

into text tokens, provided the symbols exist in the vocabulary. Similarly, our newly introduced route tokenizer

converts route context features into route tokens. However, this design presents a challenge when additional

context features must be incorporated. Since the existing route tokenizer is trained on a fixed set of features,

it cannot directly accommodate new ones, making expansion difficult. This challenge is comparable to adding

support for a new language with entirely different characters or symbols to an LLM. A possible solution could

consist in the introduction of an additional tokenizer or the replacement of the current tokenizer with one that

supports a broader set of context features. Another approach might be to represent additional context features

through the ones supported by the tokenizer, comparable to the concept of “paraphrasing”, where a missing

word or concept is expressed through alternative phrasing. Still, further research is needed to explore more

sophisticated methods for extending route context-aware LLMs’ support to additional context features.

8 CONCLUSION

In this work, we took a first step in the direction of large language models (LLMs) that can understand and

reason with route context data. We introduced two novel datasets, ContextualRoutes and LabeledRoutes, which
contain over 300𝑘 routes and labels for 1000 tasks, allowing to fine-tune pretrained LLMs for route-context-based
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reasoning. We proposed a new Route Tokenizer that converts route context into tokens analogous to natural

language tokens and developed RouteLLM, the first LLM capable of understanding route context natively, i.e.,

at the token-level. RouteLLM allows users to ask complex questions about their routes in natural language

that require world knowledge and semantic understanding, such as determining the scenic value or estimating

the best time for a phone call. We demonstrated that after fine-tuning, RouteLLM can even perform zero-shot

reasoning on route context data, i.e. give meaningful answers to questions unseen during training. While our

system demonstrates a promising glimpse into the future, we identified several key challenges for future research.

We hope, that our work contributes to the growing body of work aimed at integrating LLMs into practical,

context-aware applications in dynamic environments.
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A APPENDIX

A.1 Bounding Box Locations for ContextualRoutes

Fig. 11. We sample routes from 18 bounding boxes in order to create the Contextual Routes and LabeledRoutes datasets. The
routes comprise a variety of route context settings, such as rural areas or urban areas.

Table 2. Bounding Box Locations

Split City Approximate Area (km2) Center Coordinate

T
r
a
i
n
i
n
g

Berlin 2700 (52.4935, 13.4066)
Düsseldorf 3900 (51.23, 6.7733)
Erfurt 1600 (50.8968, 11.106)
Essen and Dortmund 5000 (51.4997, 7.2123)
Frankfurt 3500 (50.1143, 8.6785)
Hamburg 1700 (53.5486, 9.9875)
Hannover 4900 (52.3770, 9.7279)
Kiel 17800 (54.3175, 10.1355)
Munich 4400 (48.1348, 11.5820)
Stuttgart 1700 (48.7831, 9.1815)
Tübingen 15600 (48.2546, 9.2220)
Paris 5600 (48.8580, 2.35)
Reykjavik 8500 (64.1018,−21.7621)
Strassburg 1700 (48.5795, 7.7496)

T
e
s
t

Black Forest 7800 (48.5560, 8.2384)
Cologne 4700 (50.9392, 6.952)
Leipzig 740 (51.3408, 12.3709)
London 6400 (51.5078,−0.1257)
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A.2 Overview over the ContextualRoutes and LabeledRoutes Datasets

Table 3. We present an overview of all context features used to describe the route segments in the ContextualRoutes and
LabeledRoutes datasets.

Feature Name Source / Origin Example Description

T
e
m
p
o
r
a
l

cos_time System 0.5 Cosine Component of the local Time Measurement Encoding [30]

sin_time System 0.5 Sine Component of the local Time Measurement Encoding [30]

weekday System True Flag for weekdays

W
e
a
t
h
e
r

temperature Azure Maps API 22.5 [
◦
C] Temperature

cloud_cover Azure Maps API 60 [%] Percentage of sky that is obscured by clouds

precipitation Azure Maps API 10 [dBZ] Precipitation in dBZ

wind_speed Azure Maps API 15 [kph] Speed of the wind

wind_gust_speed Azure Maps API 25 [kph] Speed of the wind gusts

wind_direction Azure Maps API 180 [
◦
] Heading of the winds

lightning Azure Maps API False Flag for lightning

R
o
a
d

lanes OSMnx graph 2 Number of lanes

length OSMnx graph 150 [m] Length of the segment

heading OSMnx graph 90 [
◦
] Heading of the segment

curvature OSMnx graph 0.05 [m
−1
] Curvature of the segment

highway OSMnx graph residential Type of road

oneway OSMnx graph True Flag for oneway streets

tunnel OSMnx graph False Flag for tunnels

bridge OSMnx graph True Flag for bridges

has_junction OSMnx graph False Flag for junctions

reversed OSMnx graph False Flag for segment reversal (OSM node order)

landuse OSMnx graph commercial Describes what the area next to the segment is used for

landuse_distance OSMnx graph 50 [m] Distance of the area to the edge

grade JAXA -0.03 Grade of the segment

grade_abs JAXA 0.03 Absolute grade of the segment

T
r
a
ffi
c

speed_kph OSMnx graph 50 [kph] The speed limit

travel_time OSMnx graph 120 [s] OSM estimated travel time of the segment

max_speed_variable OSMnx graph False Flag for roads with variable speed limit

unlimited_speed OSMnx graph False Flag for roads without a speed limit

free_flow_speed Azure Maps API 55 [kph] Azure Maps estimated free flow speed of the segment

delay Azure Maps API 0.8 Delay due to traffic compared to free flow speed

current_speed Azure Maps API 45 [kph] Current traffic speed

current_travel_time Azure Maps API 140 [s] Current segment travel time

flow_road_closure Azure Maps API False Indicates whether the road is closed at the segment

incident_category Azure Maps API Accident Category of the incident

incident_delay Azure Maps API 30 [s] Delay caused by the incident in seconds

incident_distance Azure Maps API 100 [m] Distance of the incident from the segment

incident_certainty Azure Maps API 0.9 Certainty of the incident

incident_magnitude Azure Maps API 2 Impact of the incident

incident_reported Azure Maps API True Flag for reported incidents
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Table 4. We annotate the routes in the ContextualRoutes dataset with labels that allow to train RouteLLM using various

tasks. We present an overview of these tasks in this table. A
†
indicates that numerical values were converted to natural

language categories.

Task Name Annotation Strategy Description

F
e
a
t
u
r
e
E
x
t
r
a
c
t
i
o
n

bridge Template & Teacher Whether there is a bridge along the route.

flow-road-closure Template & Teacher Whether there is a road closure along the route.

has-junction Template & Teacher Whether there is a junction along the route.

incident-reported Template & Teacher Whether there is an incident along the route.

lightning Template & Teacher Whether there is lightning along the route.

max-speed-variable Template & Teacher Whether there is a variable max speed along the route.

oneway Template & Teacher Whether there is a oneway street along the route.

tunnel Template & Teacher Whether there is a tunnel along the route.

unlimited speed Template & Teacher Whether the speed is unlimited along the route.

weekday Template & Teacher Whether it is a weekday.

cloud-cover Template & Teacher Amount of cloud cover along the route
†
.

road-type Template & Teacher Questions on the category of road type along the route.

incident category Template & Teacher The category of any incident along the route.

incident certainty Template & Teacher Certainty for reported incidents along the route
†
.

incident magnitude Template & Teacher The magnitude of any incident along the route
†
.

landuse Template & Teacher Type of land use along the route (e.g., urban, rural).

lanes Template & Teacher Number of lanes along the route.

precipitation Template & Teacher Amount of precipitation along the route
†
.

length Template & Teacher The total length of the route.

R
o
u
t
e
U
n
d
e
r
s
t
a
n
d
i
n
g

compare-feature Template Compare two routes based on a feature condition.

feature-sequence Template Longest subsequence meeting a specified feature condition.

continuation Template Find the correct continuation of a route in a list of three options

(inspired by [55]).

masking Template Predict a masked route token.

reorder Template Put 3 to 26 route parts in the correct chronological order.

localization Template Locate a subsequence at the route’s beginning, middle, or end.

sorting Template Order routes by a specified feature (ascending or descending).

R
o
u
t
e
R
e
a
s
o
n
i
n
g

beauty Teacher Answer questions on route beauty, considering structure,

weather, and traffic.

creative writing Teacher Write a dialog based on a scenario and a route.

diverse questions Teacher Answer creative questions about the route, like writing poems

or suggesting songs.

quiz Teacher Create a quiz on the route and provide the correct answers.

landscape Teacher Describe the landscape surrounding the route.

long description Teacher Aa description of the route of at least ten sentences.

sentence description Teacher Describe the route in one sentence.

short description Teacher A short description of the route with at max five sentences.

traffic report Teacher Answer questions about route traffic, including reporting, iden-

tifying dangers, and assessing comfort.

weather report Teacher Answer questions about route weather, including reporting, iden-

tifying obstacles, and assessing weather implications.
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A.3 Confusion Matrices of the VQ-VAE Reconstructions
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Fig. 12. Confusion Matrices of the VQ-VAE Reconstructions for the Categorical Features (a) - (c), and the Binary Features (d)

- (n).

A.4 Prompt Used for Mistral in the User Study

You are an AI that answers questions about routes. Take a deep breath and
do it step by step. It is crucial that you are very concise and give short
answers. Step ids are marked as id#$step_number.

Reply regarding the following route and do not mention any step ids in
your text: The route is described by the following segments.

The given route consists of 27 steps. The first 11 steps are on a
residential road with an average grade of -2%, an average curvature of
0.0025 , and an average distance of 0 meters from the street to industrial
areas. The free flow speed is 44.64 kph , and the current average traffic
speed is 45.01 kph.
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Steps 12 to 16 have an average grade of -1%, an average curvature of
0.00905 , and an average distance of 9 meters from the street to
residential areas. The free flow speed is 30.00 kph , and the current
average traffic speed is 30.00 kph.

Step 17 has an average grade of 2%, a straight average curvature , and an
average distance of 5 meters from the street to transportation areas. The
free flow speed is 30.00 kph , and the current average traffic speed is
30.00 kph.

Steps 18 to 21 have an average grade of -4%, an average curvature of
0.0002 , and an average distance of 9 meters from the street to residential
areas. The free flow speed is 30.00 kph , and the current average traffic
speed is 30.00 kph.

Steps 22 to 25 have an average grade of flat , an average curvature of
0.00873 , and an average distance of 9 meters from the street to commercial
areas. The free flow speed is 30.00 kph , and the current average traffic
speed is 30.00 kph.

Steps 26 and 27 have an average grade of 5%, an average curvature of
0.03003 , and an average distance of 10 meters from the street to
commercial areas. The free flow speed is 30.00 kph , and the current
average traffic speed is 22.88 kph.

A.5 Examples Used for the User Study

We showed the participants in our user study with examples for suitable ( +○) and unsuitable ( -○) questions to ask

the agents:

+○ How is the traffic along my route?

+○ What would be the best moment for a phone call along my route?

+○ Is this a scenic route?

-○ Is there an open restaurant nearby my route?

-○ What is the name of the street I am driving on?

-○ What is the name of the city on the right?
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