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ABSTRACT
Swiss-Cheese Extended proposes a novel real-time method
for recognizing objects with capacitive proximity sensors.
Applying this technique to ubiquitous user interfaces, it is
possible to detect the 3D-position of multiple human hands
in different configurations above a surface that is equipped
with a small number of sensors. The retrieved object config-
urations can significantly improve a user’s interaction expe-
rience or an application’s execution context, for example by
detecting multi-hand zoom and rotation gestures or recogniz-
ing a grasping hand. We emphasize the broad applicability
of the proposed method with a study of a multi-hand gesture
recognition device.
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INTRODUCTION
Twenty years ago, Ubiquitous Computing as noted by Mark
Weiser in his famous essay envisioned environments with
hundreds of invisible computing devices that are able to pro-
vide various services to a user [25]. Recent advances in
processing power allow the integration of low-power, high-
performance systems in small form factors, enabling comput-
ing devices that meet the demands of ubiquitous systems.

Interaction with intelligent environments should be based on
intuitive and natural interaction metaphors, for example the
interaction via speech and gesture [22]. In the area of gesture

recognition, capacitive sensors allow detecting the presence
of objects, such as fingers and hands, and are therefore com-
monly used in touch screen devices to register multi-finger in-
put [1]. The less widely used variant of capacitive proximity
sensing allows the recognition of objects at greater distances
without requiring touch. Depending on their configuration,
these sensors enable us to detect the presence of a body part
in a proximity of some centimeters up to more than one meter
[17].

The first example of this technology - a musical instrument
called Theremin - dates back almost a century [10]. More re-
cently capacitive proximity sensors have been a research in-
terest of human computer interaction groups who investigate
many applications in hand and body tracking [28, 27, 3, 12,
23]. Considering smart environments, it becomes apparent
that capacitive proximity sensors are particularly well-suited
for realizing unobtrusive interaction systems. The generated
electric fields are only partially disturbed by non-conductive
materials, such as wood, glass or concrete [2]. Therefore, this
type of sensor can be hidden easily in the environment, for
example under tables or in floors. However, noise and ambi-
guity of sensor readings is a common problem for those sys-
tems making it difficult to infer high level information from
raw and unfiltered sensor data.

In a typical scenario we would like to infer object character-
istics depending on the current application. This may range
from reconstructing hand positions in explicit interaction de-
vices to recognizing whole-body parameters in intelligent fur-
niture. In order to infer those parameters, various approaches
were realized that rely on the classification of capacitive sen-
sor data. In [19] the authors have classified the way people
interact with everyday objects. Cohn et al. [6, 7] overcome
weaknesses of a limited detection range by applying wear-
able capacitive sensors, which are used to classify a discrete
position of a person within a room. Moreover, capacitive sen-
sors have been used to recognize persons by measuring their
capacitive fingerprint [13]. While all these works employ
sophisticated classification approaches, there are only few
methods for recognizing continuous object parameters using
capacitive sensors. The extraction of such parameters typi-
cally follows simplified techniques relying on strict assump-
tions about the type of objects to be recognized, at the cost
of not being easily applicable to different objects [21]. The
commercially available Cypress TrueTouch technology em-
ploys a 2.5-dimensional object recognition method for track-
ing the position of fingers [8]. The object recognition method
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Figure 1. Measurement modes for capacitive proximity sensing.

enables to distinguish between touch and hover actions. A
generic method for recognizing continuous object parameters
will simplify such adaptations and provide increased flexibil-
ity.

One example of a generic method is the Swiss-Cheese-
Algorithm, proposed as future work by Smith et al., that can
be applied to infer an image of the surrounding environment
combining the knowledge of many capacitive proximity sen-
sors [20]. Based on this briefly introduced idea, we have for-
mulated a novel method to recognize and track multiple ob-
jects. The final outcomes of the algorithm are configurations
of body parts that can be tracked in real-time. To test the
proposed method we have built a custom sensing array and
applied it to the task of multi-hand gesture recognition.

In summary we provide the following contributions:

1. We present a generic object recognition and tracking
method based on the Swiss-Cheese-Algorithm [20]

2. The method is implemented on a custom designed multi-
hand interaction system

3. We evaluate the presented method and compare it to cur-
rent multi-touch technologies

OBJECT RECOGNITION USING CAPACITIVE PROXIMITY
SENSORS
Capacitive proximity sensors can be designed using differ-
ent measurement modes, as illustrated in Figure 1 [28]. The
transmit mode relies on a changing electric potential that is
coupled with a person’s body. This coupling turns the user
into a transmitter whose signal can be picked up by one or
more receivers. Researchers have applied this mode to iden-
tify users on multi-touch tables [9] or realized localization
systems [23]. Shunt mode applies two electrodes - a distinct
transmitter and a receiver. This mode can be used in combi-
nation with different multiplexing methods allowing a paral-
lel access of many transmitters at the same time. Using shunt
mode, it is possible to create numerous virtual sensors that are
located in the center between each receiver-transmitter com-
bination [11]. As this method allows a high number of mea-
surements while having a manageable number of electrodes,
it was implemented as the basis of our exemplary gesture-
recognition system. Loading mode uses a single electrode
that creates an electric field without using an explicit receiver.
The electrode directly builds up an electric field with objects

in the environments. Due to its simplicity, this mode was
adopted for realizing larger activity recognition systems [27,
26, 12].

Inferring different object parameters from sensor data is a
complex task. An exact solution would require solving elec-
tric field equations for multiple objects and electrodes. This
calculation is too time-consuming for real-time calculations
in embedded systems and requires including numerous de-
tailed environmental parameters. Another prevalent issue of
capacitive proximity sensors is related to a certain ambigu-
ity in sensor readings. Considering a single sensor and its
generated electric field, a small object that is close to the sen-
sor might result in the same reading as a larger object at an
increased distance [2]. Thus, a model is required that ap-
proximates the behaviour and influence of objects within an
electric field. There are various practical solutions to build
such a model. Typically the actual shape of the desired object
is approximated by simple geometric shapes that are easier
to process, e.g. spheres for modeling hands or cylinders for
modeling arms [21]. Reducing the complexity even further
they are often considered uniform in size and shape which
allows associating sensor values to a specific distance [3].
However, reducing the number of parameters reduces avail-
able information accordingly. When considering more com-
plex scenarios, such as multi-hand gesture interaction or pos-
ture detection on furniture it becomes necessary to handle ob-
jects with multiple degrees-of-freedom and objects that are
linked together with various geometric constraints. Therefore
a method is required that considers these restrictions and al-
lows recognizing and tracking the state of various objects in
real-time.

SWISS-CHEESE EXTENDED
The basic idea of the Swiss-Cheese-Algorithm is to detect ob-
jects using elimination [20]. Initially it is assumed that the ob-
jects may be located at any position in the interaction space.
Based on the measurements of each sensor we can make as-
sumptions about the space in which no object may exist, re-
ducing the probability of object presence around a certain
proximity to the sensor. Combining the readings from many
sensors we end up with a structure not unlike a Swiss cheese,
with regions that may contain an object and others that are
distinctively empty. While the basic idea of this algorithm has
been outlined in the past as an outlook on future work, there
has not yet been any concrete implementation or theoretical
formulation [21]. In the following, we present a conceptual



Figure 2. Swiss-Cheese-Algorithm combining the knowledge of 0, 1, 6 and 12 sensors to recognize two hands. The figure shows a 2-dimensional
layer of the Swiss-Cheese-Algorithm’s outcome directly underneath both hands. White dots denote the center of an active sensor (receiver-transmitter
combination). Red colors denote high probability of object presence (close to 1), while blue colors denote low probability of object presence (close to 0).

and mathematical foundation of the Swiss-Cheese-Algorithm
and various extensions that facilitate object recognition and
tracking.

Method
In this subsection, we give a short overview about the pro-
cessing steps of our object recognition and tracking method.
The method is feasible for many different application scenar-
ios and can be easily adapted. We illustrate these steps with
our study of a multi-hand gesture recognition device, shown
in Figure 3.

We aim to determine the most likely configuration of body
parts based on the readings of many distributed proximity
sensors. One important requirement of the method is the ap-
plicability on environments where it is not feasible to deploy
a large amount of sensors. Thus, we have to make prelimi-
nary considerations about the recognizable objects and their
degrees of freedom. As a first step we define a volumetric
model of the object to be recognized. Referring to our study
of a multi-hand interaction device that is shown in Figure 3,
we aim to recognize the 3D-positions and grabbing state of
one or two hands. Therefore, the hands are modeled as boxes
with a variable x/y-edge length and an (x,y,z)-position, re-
sulting in a 5-dimensional descriptor, the object state. While
the position of the center-of-gravity of this box is directly as-
sociated to the position of the hand, the edge length in two
dimensions and their ratio to each other are used as indicator
for the grabbing state.

In the algorithm’s first execution step, a volumetric object is
defined that encloses the whole interaction space, that we
are calling cheese. This cheese can be regarded as a 3-
dimensional pseudo probability distribution for object pres-
ence in each point [20]. At the beginning of the algorithm,
the presence of body parts is considered with equal probabil-
ity everywhere, comparable to a cheese without holes. The
algorithm has to cope with a high degree of ambiguity as sen-
sors might deliver the same sensor reading for varying ob-
ject sizes and distances. Thus, the algorithm can only make
considerations about the space around a sensor in which def-
initely no object is present. This space can be modeled using
an ellipsoid around the sensor’s center. In the following, these
ellipsoids are cut out of the cheese for each sensor. The parts
left over contain the objects we want to recognize.

Let us illustrate this procedure with an example shown in Fig-
ure 2. It shows a 2D-layer of the cheese that is located in

the interaction space above the multi-hand interaction device
presented in our study. Ellipsoids are cut out of that cheese
and the position of the two hands is subsequently revealed.
Afterwards, the defined volumetric models of the objects are
fit into the remaining cheese to obtain a probability measure
for different object part configurations. However, it is typi-
cal that a large portion of cheese remains, as the sensors are
usually not able to constrain the interaction sufficiently in all
directions. Thus, we associate a higher weight to the object
state, when it is located closer to a sensor compared to states
that are located at greater distances. Using the example of the
gesture recognition device it is easy to see that if a hand is
located 10 cm above the sensing plane, the probable object
configurations are recognized at this distance and above.

In order to determine the most likely system states in real-
time, it is not feasible to evaluate all possible object config-
urations. Especially when the number of targets increases or
the object state vector’s dimensionality is high, a systematic
approach for finding the most probable object configuration
has to be considered. Particle filters, also known as Sequen-
tial Monte-Carlo method, provide a solution to this problem.
These filters can be incorporated to evaluate only the most
probable object configurations based on a spatio-temporal re-
lationship. Multiple objects can be tracked using separate in-
stantiations of a particle filter, which enables us to track two
hands in real-time with our multi-hand interaction device.

Figure 3. Our multi-hand interaction device with hands modeled as vol-
umetric objects. 10 copper plates are used as electrodes that build up an
electric field to the user’s hands.



Figure 4. An ellipsoid with three independent semi-principal axes rx,y,z
models the distance of a unit absorber to the sensor’s center

Object recognition
Forward reading model
The forward reading model is used to reconstruct a sensor
reading f that one would obtain when a unit absorber is
placed at a location (x, y, z). A unit absorber is a very small
conductor and represents the nearest possible object in the en-
vironment of a sensor for a given sensor reading. However, it
is possible that bigger objects cause the same sensor reading
at greater distances from the sensor. The forward reading f
can be seen as a prediction of a sensor reading for an imagi-
nary unit absorber. Later, this prediction is used for compari-
son with the actual sensor value.

The iso-signal shell is a surface around a sensor on which a
unit absorber causes the same sensor reading [21]. Thus, this
surface marks a volume around a sensor in which no object
may be present. Due to the proximity sensor’s layout with
two electrodes located beside each other, a sensor’s reading
depends on the direction in which an object approaches. For
example, a unit absorber that is placed vertically above a sen-
sor at a distance of 10cm could produce the same sensor read-
ing as a unit absorber placed horizontally aside a sensor at a
distance of 15cm. These axis-dependent characteristics can
be expressed by modeling the iso-signal shell as an ellipsoid,
as shown in Figure 4. This ellipsoid is composed of three in-
dependent semi-principal axis rx,y,z . When a unit absorber is
placed at a point (x, y, z), it is located on the iso-signal shell
if the following ellipsoidal condition is fulfilled:

x2

r2x
+
y2

r2y
+
z2

r2z
− 1 = 0 (1)

Depending on the applied measurement mode, a model func-
tion with different parameters for each axis is required to cal-
culate the forward reading. This model function relates the
forward reading to the distance of a unit absorber. A sim-
plified model can be based on the electric field strength in a
given object location [21]. Considering shunt mode measure-
ments with a dipole approximation based on point charges,
this means that the electric field strength around a sensor de-

creases with the factor d3, related to the distance d of a unit
absorber from the sensor. Using this approximation we can
derive the following model function for each axis i = x, y, z
to model the axis-dependent directivity: [20]

f = 1− 1

(αi + βiri)3
; i = {x, y, z} (2)

⇔ ri =
βi

3
√
1− f − αi

(3)

The equation is composed of two fit parameters for a sin-
gle axis, αx,y,z and βx,y,z . These fit parameters are applied
to model the gradient of the electric field strength along the
given axis. The fit parameters can be determined experimen-
tally by moving a unit absorber along an axis and recording
the sensor value in relation to the unit absorber’s distance to
the sensor. In the following step, the fit parameters are calcu-
lated using least-squares fitting.

We now combine the given fit function with the ellipsoidal
condition to determine the forward reading for a unit ab-
sorber located at a certain point (x, y, z) on the iso-signal
shell. Since the three semi-principal axis rx,y,z are unknown,
we can replace them with the determined fit function given
in Equation 3. We yield an equation with just one unknown
variable, the forward reading f :

(
x
βx

3
√
1−f−αx

)2

+

 y
βy

3
√
1−f−αy

2

+

(
z
βz

3
√
1−f−αz

)2

−1 = 0

(4)

The equation cannot be resolved analytically to f , the result
would be a polynomial of order 6. Thus, we choose to solve
Equation 4 by minimization using the variable forward read-
ing f . As a normalized sensor reading is restricted to a range
of [0, 1], the value of f can be determined efficiently with
methods like the Brent algorithm [4] in real-time. As an out-
come of the minimization approach we can now determine
a forward reading f each sensor would produce when a unit
absorber is located at a given point.

Prediction of object presence
We can only make considerations about the space around a
sensor in which no absorber can be located. This space is
limited to the distance between a unit absorber and a sensor
that can be regarded as the nearest possible object. In this
step, spaces in which no object may be located are cut out
of the pseudo probability distribution. To evaluate a point ~p
in space, the forward reading f is subtracted from the actual
sensor reading s that was measured, resulting in δ = f − s.
To emphasize the meaning of the value δ, consider a unit ab-
sorber located 10cm above a sensor that would cause a nor-
malized sensor reading s = 0.5. Applying the forward read-
ing model for an imaginary unit absorber in a distance of 5cm
above the sensor would yield a forward reading of f = 0.2.



When the distance of the imaginary object comes closer to
10cm, a forward reading of f = 0.5 would be determined.
At greater distances, for example 15cm, one would yield a
forward reading of f = 0.8. When computing the difference
δ = f − s of the actual reading s and the forward reading f ,
we can conclude that no object can be present for δ < 0 and
an object can be present for δ ≥ 0. However, based on this
assumption one can only conclude that the nearest possible
object is located at 10cm above the sensor, but it is also pos-
sible that a bigger object is located at a distance of 11cm or
beyond.

The difference value δ is an input argument to a sigmoidal
function, with two parameters µn (displacement) and γn
(steepness) where n = 1, 2, ..., N denotes the sensor:

Pn(~p) =
1

1 + e(−γn·(δ−µn))
(5)

The function expresses that the probability of an object be-
ing within the inner region of an iso-signal-shell of a unit
absorber is close to zero. In the space outside the iso-signal-
shell, the prediction is close to one. When the steepness γe
converges to infinity, then the sigmoidal function can be re-
garded as a simple Heaviside function. Lower values for that
parameter can alleviate the effect of noisy measurements by
expressing a level of uncertainty. In the following, the knowl-
edge gathered from all sensors is combined:

P (~p) =

N∏
i=1

Pn(~p) (6)

Thus, when all sensors are sure that an object may be present
at a given point, the function P (~p) will evaluate close to one.
If the point is within a space in which one or multiple sensors
do not consider an absorber, the function evaluates close to
zero.

Body part representation
Based on the previous findings, we are able to obtain a mea-
sure for object presence in a single point. In the following, an
approach for determining the state of an object is presented.
As explained in the overview of this section, an object state
can be embodied by a location and the properties of a volu-
metric object. However, it is possible to employ more com-
plex geometrical models that are composed of many volumes
and must be described by a higher number of parameters. It is
necessary to find a suitable compromise between the object’s
shape and the accuracy of the model. It is not viable to apply
a fine-grained arm model for the distinction of different fin-
gers if the required information is not contained in the sensor
data.

The most probable object state can be determined by max-
imizing the average volume integral over the pseudo proba-
bility distribution in each point that is enclosed by the volu-
metric model. The volume integral over the function P (~p) is
solved using a Monte-Carlo integration. V denotes the ob-

ject’s volume, M the number of Monte-Carlo samples, and
~pi a sampling point within the object:

∫∫∫
V

P (~p)d~p ≈ V · 1

M
·
M∑
i=1

P (~pi) (7)

To obtain the Monte-Carlo integral of a function, a uniformly
distributed set of points within the volume must be deter-
mined. For each of these points, the prediction of object pres-
ence is computed. With an increasing number of points, the
error between the actual integral and the Monte-Carlo inte-
gral is minimized. However, a high number of points leads to
computationally higher cost.

In order to obtain meaningful results, the object state param-
eters must be limited in a way that restricts the object posi-
tion to the interaction space and the object shape to feasible
variants. As the interaction space is usually not restrained
by sensors in all directions, the object configurations that are
closer to sensors must be weighted higher as object configura-
tions that are far away from the sensors. This linear weighting
can be accomplished by calculating the distance to the nearest
sensor or the distance to a sensing surface, when the sensors
are located in a plane.

Object Tracking
In the previous section, a method for object recognition was
introduced. Using the Swiss-Cheese-Algorithm, it is possible
to obtain a measure of probability for object presence in each
point in space. This is the basis for the recognition of objects
that can be modeled by basic geometric shapes, such as a box.
The goal of object tracking is to estimate a system state, em-
ploying a set of measurements in real-time. This estimation
does not only depend on the current time-step, but also on the
system state’s evolution in time. In single-target tracking, a
system state can be expressed by a single object state, for ex-
ample by the position of hand modeled by a box. When more
than one object is tracked, the system state is the combination
of all distinct object states. A system model incorporates the
change of a system in time, whereas the measurement model
is utilized to evaluate the probability of a hypotheses [14].

In order to determine the most likely system states, it is not
feasible to evaluate all possible system states in real-time.
Especially when the number of targets increases or the ob-
ject state vector’s dimensionality is high, a systematic ap-
proach for finding the most probable system state has to be
considered. Particle filters reveal their strengths in the pos-
sibility to track many hypothesis about an object state in a
spatio-temporal relationship. The concept makes them ro-
bust against occlusion and clutter [14]. This robustness can
be exploited in capacitive proximity sensing, as measurement
noise and fast movements pose comparable challenges on the
filter. Moreover, maintaining these spatio-temporal relation-
ships can enhance the recognition rate when objects leave the
interaction area for a short time.

Tracking multiple targets poses various challenges on parti-
cle filtering. Standard particle filters are not suited for track-



ing a varying number of targets. In particular, the samples
quickly converge to a single target when more than one target
is present [24]. To overcome this limitation, many extensions
to particle filters were proposed [15, 24]. When the number
of targets T is known in advance, it is possible to represent
the system state as a joint set of object states [24]. Problems
arise when the object states become more complex and the
number of targets increases. In this case, the dimensionality
of the system state vector quickly becomes unhandy and the
system performance decreases.

In order to avoid a rising complexity with an increasing sys-
tem state dimensionality, targets can be tracked independently
with separate instantiations of a particle filter. It is essential
to protect samples that represent local maxima of the proba-
bility distribution from extinction. Milstein et al. present the
idea of a clustered particle filter [18], that inspired our multi-
target tracking approach. In each step, the determined proba-
bility distribution is clustered for a variable number of targets.
For each cluster, a fixed number of samples is selected for the
next sampling stage. In each step, the number of targets is
determined from the variance of object states within a cor-
responding cluster. When the variance is high, the number
of targets is increased and the clustering process is repeated.
When no good object states can be found within a cluster, the
number of targets is decreased.

Furthermore, the task of tracking newly appearing targets is
not considered in standard particle filtering [15]. When par-
ticles track an existing target, a newly appearing target can
only be recognized by particles that migrate from the exist-
ing target to the new one. In order to solve this problem,
we determine an initialization density directly from the sen-
sor readings. When a sensor yields a reading that indicates
a nearby target, particles with expected object states are ran-
domly initialized in the neighborhood of that sensor. In each
initialization phase, a fixed number of particles is distributed
over the state space.

Target management
The outcomes of the particle filtering approach for multi-
target tracking are cluster centers that represent recognized
targets and their properties. Target management is the task of
keeping track of a uniquely identifiable target object through
time and handling newly appearing and vanishing targets.
Thus, the determined cluster centers that exceed an obser-
vation threshold are connected to a set of maintained target
objects. A target object has a unique ID, a history vector of
all identified cluster centers and threshold values that are used
to compensate noisy detections and to maintain non-detected
targets through measurement noise. For each time step, the
target management assigns the recognized cluster centers to
a set of maintained target objects. Therefore, the distances
from the new cluster centers to the last assigned cluster cen-
ter of all target objects is calculated. Then, the nearest cluster
centers are assigned to the existing target objects. If more
cluster centers than existing targets are recognized, the re-
maining unconnected cluster centers are used to create new
target objects. When less cluster centers are recognized, tar-
gets that were not assigned to a cluster center are removed.

Figure 5. The prototypical multi-hand interaction device employing
shunt mode measurements. Two receivers are placed in the center while
8 transmitters are located at the device’s edges.

Interpolation
In general, the recognized cluster centers have relatively
smooth trajectories over time. However, there might be varia-
tions due to noisy measurements and the probabilistic nature
of particle filters. Thus, interpolation techniques can improve
the continuity of trajectories in applications that track ges-
tures. Moving average filtering of a target object’s past cluster
centers can smooth the trajectories and lead to higher preci-
sion. A moving average a for a target object with a history h
of past cluster centers with window size L can be determined
as follows:

a =
1

L

L∑
i=0

ht−i (8)

An averaging approach with a fixed window size L faces
the great disadvantage of increasing the latency to an unac-
ceptable amount. When having smaller window sizes, the
system’s reaction time increases whereas the smoothness de-
creases. Most gesture-recognizing applications require low
precision and latency while fast movements are performed.
For tiny movements, the precision is considered to be more
important than latency. Thus, we apply an adaptive moving
average filter that determines the size of the input history clus-
ter centers depending on the object’s movement speed.

STUDY: GESTURE RECOGNITION DEVICE

Prototype
We created a hardware platform for gesture recognition that is
shown in Figure 5 [11]. The platform operates in shunt mode
and applies a combination of time-division and frequency-
division multiplexing for parallel transmitter operation. The
gesture recognition prototype uses two synchronized boards,
each driving four transmitters and one receiver. The boards
are able to receive transmitted signals from each other and
can be easily extended. We transmit frequencies of 10-
25KHz, sample the received signals at 100KHz and apply



a Fast Fourier Transform for reconstruction of the transmit-
ted signal amplitude. The transmitted sine-wave signals have
a peak-to-peak amplitude of 5V. The multiplexing approach
enables us to retrieve 50 samples per second for each receiver-
transmitter combination. We created a hardware platform for
gesture recognition that is shown in Figure 5 [11]. The plat-
form operates in shunt mode and applies a combination of
time-division and frequency-division multiplexing for paral-
lel transmitter operation. The gesture recognition prototype
uses two synchronized boards, each driving four transmitters
and one receiver. The boards are able to receive transmit-
ted signals from each other and can be easily extended. We
transmit frequencies of 10-25KHz, sample the received sig-
nals at 100KHz and apply a Fast Fourier Transform for recon-
struction of the transmitted signal amplitude. The transmitted
sine-wave signals have a peak-to-peak amplitude of 5V. The
multiplexing approach enables us to retrieve 50 samples per
second for each receiver-transmitter combination.

The gesture recognition device consists of eight transmit elec-
trodes located at both sides of the device and two receive elec-
trodes that are placed in the center of the sensing plane. This
mode of operation makes it possible to use 16 virtual sen-
sors, one virtual sensor per receiver-transmitter combination.
Applying this setup, we can detect fast multi-hand gestures
above an area of 40 x 20cm with a maximum detection height
of approximately 20cm.

Supported Gestures
Discrete gestures represent actions that trigger a discrete
command, such as page turning. The recognition is based
on the covered distance and movement direction of a target
object, whereas the movement speed is of secondary inter-
est. Thus, the movement history of each target object must be
analyzed continuously. This processing takes place in each
time-step applying a sliding window on the history of object
states.

Figure 6. Swipe gestures from left to right with a single hand and from
bottom to top with two hands

Swipe gestures, visualized in Figure 6, are well known in
multi-touch applications and are often applied on image
browsing or changing views [16]. This gesture type can be
performed with a single target, but is also applicable on two
targets moving in parallel. A swipe gesture is based on a
movement parallel to a reference axis with low deviations to
the orthogonal axis. Furthermore, it needs to be performed
with a certain movement velocity. An average velocity in the
x- and y-direction and the movement distance is calculated
for a window with its past cluster centers. When the veloc-
ity in a single direction and the distance exceeds a threshold,

a swiping action is recognized. In order to properly recog-
nize a swiping action, the average velocity to the orthogonal
direction must lie within an error threshold.

Continuous zoom and rotation gestures with two hands are
shown in Figure 7 [5]. They are analogous to pinch/zoom
and rotate gestures known from multi-touch applications [16].
In contrast to multi-touch, gestures are not performed using
two fingers but with two hands. As soon as two hands are
recognized, the corresponding angle between the hands with
respect to the device’s longitudinal axis is calculated, repre-
senting the desired rotation. The distance between both hands
is mapped to a zoom factor.

Figure 7. Combined zoom and rotation gesture (green) and the corre-
sponding zoom and rotation axis (yellow)

A grasp action, depicted in Figure 8, can be used for drag-
and-drop gestures or to activate a different gesture interaction
set. For example, it is feasible to perform a grasp gesture in
combination with a swipe gesture to control different parts of
an application. Grasp actions can be recognized depending
on the object’s length and width.

Figure 8. Grasp and release actions can be utilized for drag-and-drop
functionality

In contrast to pure multi-touch applications, variants employ-
ing capacitive proximity sensing have certain limitations re-
garding direct interaction. Considering multi-touch applica-
tions, the interaction barriers are always apparent: interaction
starts when a finger touches the multi-touch surface and ends
when the finger is removed. Regarding capacitive proxim-
ity sensing, the user can only make preliminary considera-
tions about the interaction barriers, for example the height in
which a hand may be detected. Thus, the interaction barriers
are fuzzy and not apparent to the user.

Due to this important fact, direct feedback on the interaction
status is very helpful for a user. Furthermore, it is necessary to
soften Boolean decisions like selection actions. An activation
state indicates when some predefined constraints are not or
only partly fulfilled. These constraints can employ the verti-
cal hand distance or a timer-controlled activation delay. Such
a delay can be used for the object selection and triggering
of region-dependent actions. An exemplary activation state
feedback was realized using a vertical timer bar underneath
each cursor. When the cursor is not able to trigger an action,
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Figure 9. The left plot shows a sensor’s resolution which decreases with
higher object distances. The normalized sensor values and their stan-
dard variance for a constant surrogate arm distance are shown in the
right plot.

this means it is passive, it is marked in white. An active cur-
sor, indicating that gestures can cause immediate actions, is
marked in blue. Beside these gestures, region-dependent ges-
tures were realized that trigger commands as soon as a hand
remains over a predefined region. For example, this gesture
type can be utilized for implementing continuous scrolling
behaviors in an application. Region-dependent gestures can
also be protected by a timing threshold, such that accidental
movements do not cause immediate effects. Moreover, the
time that a hand rests above such a region can be employed
to continuously effect interaction properties, for example in-
crease the scrolling speed with respect to the resting time.

Evaluation
Object recognition and temporal performance
The object recognition performance highly depends on the
hardware being used. In order to characterize the object
recognition performance, we adopted a measurement setup
proposed by Smith et al. [21], which was later used by Wim-
mer et al. [27]. The test setup uses a grounded aluminum
tube acting as a surrogate arm. We took the vertical distance
to the capacitive proximity sensors in relation to the acquired
sensor values with their standard variance as a measure for
the system’s resolution. Assuming Gaussian noise, the reso-
lution expresses that the reconstructed distance is in a given
range for 68.3% of all acquired sensor values. Figure 9 shows
the normalized sensor values with their standard variance for
the given vertical distance of the surrogate arm. In our eval-
uation we achieved a resolution of approximately 3.5mm at
object distances around 50mm, and 35mm at object distances
of 200mm. The resolution plot indicates that the resolution
decreases with the vertical distance of an arm. This property
of a capacitive proximity sensing system can be expressed in
the object recognition model with the steepness factors γn.

The processing chain introduces several temporal delays
caused by the hardware, particle filtering, target management,
and interpolation. While the capacitive sensing hardware is
able to measure the proximity to an object in realtime, the
worst-case sensor update rate and the PC communication in-
troduce a delay of approximately 30ms. With a particle filter
update rate of 25Hz, new objects are usually recognized in
1-2 particle filter iterations. To suppress noisy detections at
the border of the device, the target management introduces an

additional delay by including new targets only after two suc-
ceeding detections. This results in a total delay of 150ms for
newly appearing objects. Existing objects are tracked with
delays mainly resulting from interpolation. For small move-
ments in the area of a few millimeters, this delay is approxi-
mately 150ms in total, too, averaging over 3 succeeding ob-
ject configurations. For fast movements in the area of 20cm,
the total delay is only 70ms as the adaptive averaging interpo-
lation is limited to a single object configuration, thus remov-
ing the delays associated with interpolation.

Usability evaluation
A usability evaluation was conducted at the student fair Hobit
in Darmstadt (shown in Figure 10) with 18 participants, the
majority not having a technical background. The evaluation’s
goal was to obtain feedback on the general user experience,
including precision and reaction time, evaluate suitable ap-
plications and to compare the prototype’s performance to a
multi-touch system. As a prerequisite, a short introduction
into the technology and the handling of the applications was
given to every participant.

The first part of the evaluation focused on two gesture-
controllable applications: an image viewer and a gaming
application1. The prototype was placed on a table in front
of a screen showing the application. The participants could
choose to either sit or stand during the evaluation. Regarding
the image viewer, each person had to accomplish a predefined
set of tasks, such as image rotation, selection and browsing.
The gaming application was evaluated four times - single-
handed and two-handed - with one repetition to assess the
learning curve and determine if users favor either multi-hand
or single-hand interaction. The collected points as well as the
total time to finish a game level was recorded. In order to
compare a participant’s experiences with the 3D-interaction
approach to a multi-touch enabled device, the same tasks had
to be conducted on an ACER Iconia tablet running a standard
image gallery based on Android. The reason for this com-
parison is the extendibility of multi-touch devices based on
capacitive sensing to register 3D-interaction using the same
1Tux Racer - tuxracer.sourceforge.net

Figure 10. Usability evaluation at the student fair Hobit in Darmstadt.
The electrodes are hidden under a surface made of acrylic glass.



technique. Therefore, our object recognition method can be
applied as a generalized approach for interacting above a ca-
pacitive sensing device. In the second part of the evalua-
tion, the users were asked to fill out a questionnaire to pro-
vide some qualitative feedback about their experience. The
subjects had to rate their experiences on a Likert scale from
1 (no approval) to 10 (full approval). Additionally, they
were asked to identify future application scenarios and advan-
tages/disadvantages compared to multi-touch technologies.

Many test subjects experienced the evaluated prototype and
its applications to be intuitive (8.71 approval) and uncom-
plicated. Most of them had the impression that the pro-
vided tasks could be accomplished easily (7.47 approval) and
the system’s reaction was comprehensive (6.94). Almost all
subjects could imagine using a similar interaction device on
a regular basis (8.53 approval) and deemed that the evalu-
ated prototype is an interesting interaction modality (9.59 ap-
proval). They were fascinated by the possibility of contactless
and gesture-based interaction. The large size of the proto-
type’s interaction area was also a compelling factor. Gestures
such as swiping were experienced to be recognized fast and
with great precision. Both evaluated applications, the image
viewer (8.0 approval) and the gaming application (8.59 ap-
proval) appealed to many subjects. Regarding the gaming
application, the subjects were able to rate their favorite in-
teraction mode on a Likert scale from 1 (single-hand) to 10
(dual-hand). Most users were either attracted to single-hand
or dual-hand control, only few users liked both interaction
modes. The gaming application, that was evaluated twice for
each interaction mode, showed that there is a flat learning
curve, letting users master the game quickly. Many users did
not improve during the two rounds and achieved equally good
scores from the beginning on.

The subjects had problems with the system’s reaction time
(5.88 approval to very fast recognition compared to very slow
recognition), that can reach a maximum latency of 150ms.
Especially in the gaming application, this latency turned out
to be critical. Moreover, some people identified the lack
of precision (5.59 approval to very high precision compared
to very low precision) as an unpleasing factor. A few sub-
jects criticized the system’s recognition bounds that were
not marked explicitly. Furthermore, the test persons expe-
rienced a tiring interaction posture that was caused by low
table height and stretched arms. In many cases, the subjects
unsuccessfully tried to influence the cursor position relatively
to the current position, in a similar way as using a normal
touchpad.

Compared to multi-touch interaction, the obvious advantage
of contactless interaction was stated out by many people.
Moreover, 3D-interaction can offer more modes of interac-
tion. The subjects mentioned advantages like easier interac-
tion (less fine-grained) and a seamless and invisible integra-
tion into the environment. Interaction can also be performed
when wearing gloves and with less attention. On the other
hand, the test persons stated that multi-touch is more precise
and faster. In a direct comparison between a multi-touch im-
age viewer and the gesture based image viewer, the multi-

touch image viewer was favored by most people. This can be
explained by the high interaction speed and precision that can
be achieved with multi-touch technology.

The test persons were asked to identify future application
scenarios. Most test persons could envision systems using
capacitive proximity sensing in the area of home entertain-
ment. In particular, the subjects suggest controlling TVs, au-
dio, game consoles and personal computers using this tech-
nology. Due to the contactless interaction, medical and sur-
gical applications were also mentioned very often. In con-
trast to multi-touch technologies, such systems might offer
great advantages regarding sterility and cleanability. This is
a major concern of many users who identified applications in
public transport (ticket machines) and public sanitary instal-
lations. The contactless and invisible integration in furniture
or behind walls and doors is an important advantage for many
users. Seniors who are not able to perform fine-grained move-
ments, for example those suffering from Parkinson’s disease,
can benefit from systems that recognize coarse gestures. Fur-
thermore, conference rooms and presentation environments
were proposed to be equipped with gesture recognizing sys-
tems that facilitate the interaction with such a complex tech-
nical environment.

Summing up, almost all participants liked contactless
gesture-based interaction and experienced it to be intuitive
and comprehensive. The precision and reaction time were
criticized by several subjects. We plan to improve the preci-
sion by using a higher number of sensors and experiment with
different volumetric representations. The latency is caused by
a Java implementation running on a PC, which is currently
migrated to the interaction device’s microcontroller. In con-
trast to multi-touch technology, the interaction speed with an
application is significantly slower due to longer lasting ges-
tures. However, the strength of contactless gesture recogni-
tion lies in different application fields that cannot be covered
by multi-touch technology.

DISCUSSION AND CONCLUSION
In this paper we presented Swiss-Cheese Extended, a novel
method for recognizing and tracking objects in ubiquitous
user interfaces using arrays of capacitive proximity sen-
sors. We formulated and implemented the Swiss-Cheese-
Algorithm that allows generating a measure for object pres-
ence in space. The algorithm was extended by application-
dependent volumetric object representations and by adding
customized particle filtering to track existing and newly ap-
pearing objects in real-time.

In order to evaluate our method we created a prototype for
multi-hand gestural interaction. Based on this custom-built
system the presented method allows to reliably track the
state of two hands using just 16 sensor channels. Our sys-
tem supports various gestures, including multi-hand rota-
tion and zoom as well as grasping actions. These gestures
allow controlling different demonstration applications that
were adapted for our input device. To evaluate the perfor-
mance and user experience, we finally performed a study that
compared our system to a multi-touch tablet. While the test



persons considered the system improvable in terms of inter-
action latency and precision, most participants valued the in-
tuitiveness and novelty of the device. Various potential ap-
plication scenarios were identified, ranging from medical so-
lutions, where sterility is crucial, to unobtrusive integration
in furniture. Particularly in assistive applications, the pre-
sented method can enrich the execution context, for example
by identifying unhealthy postures in beds.

As a first future step, the sensor system is currently optimized
to improve the interaction speed and precision, being the main
points of criticism in our study. Future iterations will out-
source the processing steps of object recognition and tracking
to a dedicated microcontroller. We plan to apply our object
recognition approach to the domain of whole-body interac-
tion and estimate body poses using a human skeleton model.
Finally we intend to investigate additional application sce-
narios with different measurement modes, electrode materials
and shapes.
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