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Abstract. Activity recognition with a wearable accelerometer is a com-
mon investigated research topic and enables the detection of basic ac-
tivities like sitting, walking or standing. Recent work in this area adds
different sensing modalities to the inertial data to collect more infor-
mation of the user’s environment to boost activity recognition for more
challenging activities. This work presents a sensor prototype consisting
of an accelerometer and a capacitive proximity sensor that senses the
user’s activities based on the combined sensor values. We show that our
proposed approach of combining both modalities significantly improves
the recognition rate for detecting activities of daily living.
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1 Introduction

The final publication is available at: http://link.springer.com/chapter/10.1007/978-3-642-34898-3_2

Persons affected from physical and mental restrictions and their care givers
can profit significantly from unobtrusive activity monitoring solutions. For exam-
ple, formal care givers could equip a person with a wearable activity monitoring
system that evaluates the course of a disease or the influence of an adapted medi-
cation [14]. This scenario is especially relevant for people suffering from dementia
who have limitations in organizing their daily activities. A simple wearable ac-
tivity monitoring solution could analyze activities performed in daily life, such
as drinking, eating and sleeping habits.

Sensing a person’s activity is an active research topic with a raising interest
due to the advancement in mobile phone technology. These devices include mul-
tiple sensors and therefore enable the recognition of daily activities [7]. Current
wearable activity recognition systems are able to unobtrusively capture and rec-
ognize a person’s activities throughout the whole day. These systems often rely
on inertial sensor data that are captured by wearable sensors embedded in a
mobile device [7] or attached to the body [17]. Usually, single sensor modalities
are used or duplicated to detect the activities. However, it is a great challenge to
identify many activities just by using a single modality like the accelerometer.
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Capacitive proximity sensors on the other hand can indirectly measure the
distance and nature of a grounded object within reach. This means that the
measurement result depends on the object’s distance, its size and the material
it is made of. In this work, we show that an accelerometer and a capacitive
proximity sensor can be used to improve activity recognition in activities of
daily living that rely heavily upon object usage. Therefore, we obtained an open-
hardware and open-source wrist-worn activity data logger [1] and integrated a
capacitive proximity sensor into its wristband.

There are several intuitive examples for which a combination of accelerometer-
based activity recognition with a capacitive proximity sensor reveals its strength.
For example, it may be conducted which material is placed underneath the wrist-
band. The capacitive proximity sensor would return a different measurement re-
sult for a hand placed on a couch covered with fabric than a hand placed on a
wooden table. Moreover, the approximate distance from the wristband to objects
can be exploited to identify activities like grasping into a locker or a refrigerator
to prepare food.

The remainder of this paper is structured as follows: First, Section 2 is ded-
icated to related work work in activity recognition, in particular considering
approaches with multiple sensing modalities. Section 3 presents the hardware
based on which a wrist-worn sensor prototype was built, fusing an inertial data
logger and a capacitive sensor integrated into a wristband. The experimental
setup, the scenario with daily activities and the activity recognition evaluation
results, showing the performance boost of the capacitive sensor unit, are given in
Section 4. The paper is wrapped up with a conclusion enumerating the findings
of the evaluation, as well as pointing out future research potential.

2 Related Work

Activity recognition research relying on wearable sensors mostly considers iner-
tial data from the participants body to infer performed activities, such as in the
works of [17, 4, 20, 3]. The acceleration data is often augmented with data from
sensors such as gyroscopes [12], magnetometers [2], ambient light [6] or ambient
and skin temperature [13], aiming to extract a more detailed environmental user
context. In [26], the authors use heart rate information as an addition to the
accelerometer data to detect activities like lifting and lowering loads or even
digging. In [23], workshop assembly activities are detected by augmenting accel-
eration sensors with microphones.

The works of Fishkin et al. [9] and Patterson et al. [15] show that detecting
touched and used objects can be very helpful for activity recognition. By using
RFID readers that are embedded in gloves or bracelets at the wrist and RFID
tags attached to various objects of interest, one can detect the object grasped
and used by the user, thus aiding the activity recognition in various application
scenarios, such as activities of daily living [22] and [16], activity tracking in car
manufacturing [21], or household and gardening activities [5].
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Our approach to enhance the inertial data from a wearable sensor is compa-
rable to the RFID scenarios just mentioned, as it also relies on a single wearable
sensor and an unobtrusive deployment. The main difference lies in the fact that
we do not consider an accurate detection of tagged objects, but the proximity
to various unknown objects and the environment.
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Fig. 1. Three different capacitive proximity sensing modes can be distinguished [18].
The sensing electrodes build up an electric field to objects in the environment, illus-
trated with a cloud.

In the field of capacitive proximity sensing, three different measurement
modes (shown in Figure 1) were identified by Smith et al. [19]: transmit mode,
shunt mode and loading mode. Transmit mode is based on a varying electric
potential coupled to an object that can be measured by a capacitive proximity
sensor next to that object. Shunt mode applies two electrodes, a transmit and
a receive electrode, that can measure capacitance changes produced by objects
disturbing the electric field between the two electrodes. In loading mode, a single
electrode builds up an electric field to any grounded object in the environment.
By measuring the capacitance, conclusions can be made upon the proximity and
nature of an object. In our work we apply loading mode since it requires only a
single electrode that can be integrated invisibly into the wristband.

Capacitive proximity sensing faces the great advantage of being robust against
changing lighting conditions and occlusion. Moreover, sensing electrodes can be
integrated invisibly into the environment. On the other hand, the exact distance
to objects can only be approximated since the object’s surface, its conductivity
and grounding has influence on the measurement result. A single sensor will
thus deliver data that has a certain degree of ambiguity. Due to the nature of
capacitive proximity sensors, they can be prone to errors in environments with
strong and rapidly changing electric fields. This, however, is usually not an issue
when considering activities of daily living.

A great variety of capacitive sensors and measurement techniques exists [19].
The most common sensing principle, the loading mode, is based on running
numerous charge and discharge cycles of the virtual capacitor that is created
by the electrode and the environment. Depending on the charge and discharge
times, one can infer the corresponding capacitance. This sensing principle is
applied by Wimmer et al. in [24] who presented a toolkit for capacitive proximity
sensing. In previous works, capacitive proximity sensors were applied in various
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fields of human-computer-interaction. Wimmer et al. and Grosse-Puppendahl
et al. presented gesture recognition systems [25, 10] as well as smart furniture
that can sense human activities [25] and classify human postures [11]. Cheng
et al. have investigated the possibility of using capacitive sensors for activity
recognition by measuring shape changes of muscles and skin [8].

3 Hardware

This section presents the two components of our hardware prototype, the wrist-
worn activity data logger tailored to capture acceleration data, and the capacitive
proximity sensor used for distance measurements.

3.1 Activity Data Logger

The HedgeHog sensor [1] is a custom designed wearable data logger aiming at
long-term deployments in activity recognition scenarios. Due to its small form-
factor (37x32x16mm) and weight, this wrist-worn sensor is an unobtrusive way
to record relevant motion data.

Fig. 2. The inertial data logger featuring a low-power microcontroller, a 3 axis ac-
celerometer, a microSD flash card for storing the sensor data and a USB connector for
accessing the data (on the right) is powered by a small lithium polymer battery and is
packaged into a plastic case to be worn at the wrist (a version with an OLED display).

The sensor node itself is built around the low-power Microchip microcon-
troller (PIC18F46J50) featuring an accelerometer sensor (ADXL345) to capture
human motion, light and ambient temperature sensors and a microSD flash card
for locally storing the sensor data. The sensor is powered by a 200mAh lithium
polymer battery, which allows for two weeks of continuous recording on a single
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Fig. 3. The sensing circuit is based on a timer with an operational amplifier that acts
as a voltage follower. The wire that is labeled with “antenna” leads to the sensing
electrode, whereas the wire labeled with “guard” leads to the shield electrode.

battery charge. A USB port is used to configure the sensor (e.g. setting the sen-
sitivity of the accelerometer), to access the stored sensor data, and to recharge
the battery. A plastic case packages and protects the sensor to be worn at the
wrist (Figure 2).

The 3D accelerometer sensor is being sampled at 100Hz, resulting in 10ms
equidistant measurements. For efficiency reasons, the sensor data is run-length
encoded before being stored locally to the microSD card. The HedgeHog can be
extended with further sensors tailoring different application scenarios. For our
scenario, we have added a capacitive proximity sensor that is described in detail
in the next section.

3.2 Capacitive Proximity Sensor

A wrist-worn capacitive proximity sensor requires a shield that eliminates the in-
fluence of the grounded arm directly underneath the sensor. Using this setup, we
can detect the proximity to a grounded object in the environments for distances
up to 20cm. Especially for mobile devices, it is required that the sensor draws a
very small amount of power. Thus, other proximity sensing input modalities like
ultrasound or optical measurements are not applicable for this type of mobile
application.

The capacitive proximity sensor performs measurements in loading mode.
Two electrodes are integrated into the wristband, one sensing electrode and one
shielding electrode. The sensor draws a supply current of 1mA at 3.3V when
active which qualifies it for wearable proximity sensing applications. In the fol-
lowing a virtual capacitor denotes the capacitance between the sensing electrode
and the environment. The capacitance of the sensing electrode to environmental
objects increases with closer distances.

The sensing circuit schematic is shown in Figure 3. It is based on a timer that
controls the charging and discharging cycles of the virtual capacitor that is built
by the sensing electrode and the surrounding environment. The timer toggles
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Fig. 4. The hardware prototype at a glance: HedgeHog activity logger at the lower
right, the capacitive sensor unit at the lower left, and the wristband with the sensing
and the shield electrodes on-top each other. The electrodes are covered with adhesive
tape for isolation purposes.
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Fig. 5. Overview of the measurement procedure carried out by the HedgeHog sensor:
using the microcontroller’s Timer0 module in counting mode, the oscillating signal
generated by the capacitive sensor circuit can be measured by counting the frequency
pulses over a predefined gate time of approximately 9.5ms.

from charge to discharge at the time when a threshold voltage at the capacitor
is reached. This results in an astable operation with succeeding charge/discharge
cycles. When the capacitance of the virtual capacitor increases, the charging time
will also increase and vice-versa. Therefore, the capacitance is inversely propor-
tional to the number of charging cycles in a given time span. In order to guard
the sensor from measuring the capacitance to underlying objects, a shield elec-
trode is placed directly underneath the measuring electrode. The shield is driven
with the same potential as the sensing electrode, such that the capacitance be-
tween the two electrodes is negligible. Using this shielding method, the measured
capacitance will only be slightly affected by the grounded underlying arm.

Figure 4 shows the the wrist-worn prototype used in the evaluation experi-
ments, with the HedgeHog as the main data logger, the capacitive sensor circuit
and the wristband holding the sensing and shielding electrodes.

The operations required for a measurement cycle are illustrated in Figure 5.
The proximity sensor board generates a clock signal with varying frequency de-
pending on the charge and discharge cycles. The HedgeHog measures the result-
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ing capacitance by counting the signal’s edges over a gate time of approximately
9.5ms. During that counting phase, the microcontroller is sent to sleep in order
to reduce power consumption.

4 Experiment

This section presents the experimental setup including the activities and the
participants, as well as the findings that were obtained during the evaluation.

4.1 Setup and Scenario

The experiment setup aims to depict a typical scenario of a person in daily life.
Especially in the field of Ambient Assisted Living (AAL), it is desired to monitor
activities like drinking, preparing lunch and sleeping. A fine-grained monitoring
of such activities may help elderly or people suffering from mental diseases to
maintain a healthy day/night rhythm and take action if irregularities occur.
Figure 4 shows the modified HedgeHog activity logger that has been extended
with a capacitive proximity sensor. The wristband has two electrodes, a sensing
electrode underneath a slightly bigger shield electrode.

The recorded test set contains the following activities: opening door, sitting
on a couch, lying on a couch, putting kitchen equipments from a shelf and out
of a locker, making a marmalade sandwich, eating the sandwich, pouring and
drinking water, walking and sleeping. The relations of these activities to envi-
ronmental objects are given in Table 1. Some of those activities are very hard to
recognize when the data is limited to a single modality like a 3D accelerometer.
For example, sitting at the table and sitting on a couch are very similar activ-
ities. We aim to show that the data basis can be significantly improved by the
additional input modality.

Table 1. Some details on the activities performed during the experiment and objects
directly involved or nearby.

activities objects involved objects nearby

open door door knob door
sitting chair or couch body, chair, couch, table
lying couch body, couch, cushion
get things plate, glass, cutlery, shelf, locker, fridge, table

bread, marmalade, bottle
make sandwich bread, knife, marmalade table, plate
eating marmalade sandwich table, plate, body
drinking bottle, glass table, body
sleeping bed, cushion, blanket body
walking body
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In order to evaluate if capacitive proximity sensors in wrist-bands can en-
hance the performance of activity recognition, we have conducted an evaluation
with 7 test persons. All test persons received a basic script with the activities
they were supposed to perform. They were not given any instructions about
the way they are supposed to perform the activities. After manual labelling, we
used this test-set as ground truth and performed a 4-fold cross-validation on
an support-vector machine (SVM) classifier on each user. The cross-validation
was performed once with and once without including the data of the capacitive
proximity sensor into the feature set. We chose an SVM classifier because of its
high relevance in activity recognition and its fast performance.

The classifier was trained with basic features that were extracted from a
sliding window of 1 second width. Our first tests have shown that greater win-
dow sizes do not provide better classification results. In order to suppress noise
contained in the capacitive proximity sensing data, we applied a moving aver-
age filter with a kernel size of 10. The final feature set contained the arithmetic
mean, min, max, median and standard variance for each accelerometer axis and
the capacitive proximity signal. These simple feature types represent standard
features applied in activity recognition. Since we aim to show an improvement
using the new modality, the selection of features and classifiers does not represent
the primary focus of this paper.

4.2 Evaluation Results

In the following, the performed activities will be analyzed in detail, stating the
influence of the capacitive proximity sensor on the classification result. In gen-
eral, the usage of data provided by the new modality showed improvements in
recognition rates reaching from 2.4% up to 10.7% for single activities.
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Fig. 6. When the participants entered the apartment, the wrist approached the door
knob twice, at the time of opening and closing the door. This fact can be observed
in the capacitive proximity data (upper plot) at the beginning and at the end of the
activity, whereas the acceleration has little characteristic information (bottom plot).
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The ”opening door” activity has very poor recognition rates without the
data from the proximity sensor. The average F-measure could be increased from
35.5% to 46.2%. A plot of the activity is given in Figure 6. The capacitive
proximity sensor shows two approaches to the door knob, one for opening the
door (2s) and one for closing the door (9s). The acceleration sensor captures
relevant data in the time in which the person moves into the room and the hand
changes from the outer to the inner door knob (5 - 7s). The recorded data for
this activity also shows strong correlations between all experiment participants.
The confusion matrices show that the “open door” activity was often confused
with the “sitting” activity, probably because of the amount of motion on the
one hand and the proximity to nearby objects (door, couch or cushions) on the
other hand. By using the capacitive sensor data, the recall for that class and
confusion with the sitting activity could be improved.
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Fig. 7. Example of the “sitting” activity in which the user moved his hands quite
frequently (bottom plot). Most of the time the values of the proximity sensor stay
more or less constant, probably due to the hands position on the couch’s fabric. The
sharp peak in the capacitive sensor data (upper plot) occurred when the participant
scratched the back of his head.

After closing the door, the participants were supposed to sit down on the
couch. It turned out that there are great variations of the sitting posture and
the corresponding hand positions. Many users tapped with their fingers or hands
while sitting, changed their sitting positions very frequently, or were even talking
and gesticulating, as shown in Figure 7. In this case, it is obvious that the data
from the acceleration sensor is very difficult to interpret as there are numerous
changes in the axial orientation of the sensor. However, the capacitive proximity
sensor is able to indicate when a hand is placed on the surface of the couch.
Especially for this particular participant, the F-measure increased from 50.3%
to 60.4%, while the average F-measure improved from 68.0% to 74.4%.

In the following, the participants were instructed to lie down on the couch.
Again, there were great variations in how this activity was performed by the
participants. For example, some of them crossed their hands under their head,
or placed them on their body. For this class, the average F-measure could only be
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Fig. 8. An example of the “get things” activity, where the participants had to get
food and dishes from shelves and lockers. The proximity sensor peaks in the beginning
(9s and 19s) indicate immediate proximity to shelf, and to the locker (55-63s) in the
kitchen (upper plot). The signal drop at the end results from the participant placing
his hand on the table when she was finished.

increased by 2.4%, from 81.2 to 83.6%. Considering some participants, the activ-
ity was often confused with the “make sandwich” class. By using the proximity
modality, the confusion between the two classes could be reduced.

After that, the participants were asked to walk over to the kitchen and to
put food and dishes from a shelf and a locker on the table. This activity involved
direct interactions with various objects as well as proximity to furniture in the
room (see Table 1). The capacitive proximity sensor was able to capture the
proximity to the shelf and to the table (see Figure 8). The average F-measure
for this activity is rather low, but improved by 6.8% from 53.8% to 60.6%. The
worst performing participants for this activity reached an F-measure of 46.8%
without and 53.5% with the capacitive sensor, while the best performing one
reached 62.0% and 64.5% respectively. The low performance results from con-
fusions with other activities, with a higher tendency to the “make sandwich”
activity across all participants. This is most likely due to various objects in-
volved in both activities, and the fact that 1-second features are obtained. The
capacitive sensor modality has a more positive impact reducing the confusion
with other activities.

Figure 9 shows an example instance of preparing a bread with marmalade. It
is notable that the acceleration data does not seem to provide any characteristic
patterns, while the proximity sensor indicates a table, plate, or other objects
in immediate distance. This activity showed a high improvement in the average
F-measure by 10%, from 49.0% to 59.8%, where the data delivered by the ca-
pacitive proximity sensor is taken into account. The ”make sandwich” class was
often confused with the ”sitting” class for some users, probably due to lots of
motion during the sitting, as mentioned previously. For other users, ”make sand-
wich” was confused with ”eating” or ”drinking”. Using the new input modality,
confusion across users could be reduced.
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Fig. 9. An example of the “make sandwich” activity, where the participants had to
put marmalade on a slice of bread. The proximity sensor indicates the closeness to the
table, while the acceleration sensor shows recurring hand motions.
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Fig. 10. An example of a participant eating a marmalade sandwich, taking 5 bites
from it. After each bite, the hand is placed on the table, which can be recognized both
in the acceleration as well as the proximity data plots.

When considering the eating activity, the impact of the new capacitive prox-
imity sensor on the classification performance is quite low, as the chosen features
are able to distinguish it from other activities. Some of the participants ate their
sandwich leaving their hand close to the mouth, while others moved their hand
up and down putting their sandwich aside on the plate, which also results in
the performance range from 71.2 to 88.1% without and 77.5 to 90.6% with the
proximity data. An example of an eating activity is shown in Figure 10, where
the participant took a few bites from the sandwich while putting it down every
time. The average F-measure increased slightly by 2.7% (from 79.5% to 82.2%).

The activity “drinking water” is depicted in Figure 11. The participant took a
few sips from the glass, with leaving the hands positioned. These motions can be
easily detected in the acceleration as well as proximity data. The accelerometer
data shows that there periodic up- and down-movements while the capacitive
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Fig. 11. An example of the “drinking” activity. The participant first pours some water
into the glass and then takes three drinks of water. After each sip, he returns his arm to
the table which can be observed in the characteristic patterns of the proximity sensor.
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Fig. 12. An exemplary instance of the class “walking”. The acceleration sensor and the
proximity sensor show periodic recurring patterns that are related to the pendulum-like
arm movement and the proximity to the person’s body during those movements.

proximity sensor delivers data that is associated to the proximity of the table.
The F-measure lies at 48.4% without and 54.4% with the proximity data taken
into account, resulting in a gain of 6%.

Regarding the walking activity one can identify periodic changes in the ac-
celeration as well as in the measured capacitance, illustrated in Figure 12. While
walking, the capacitance between the wristband and the leg increases when the
wristband is located close to the body and decreases when the wristband moves
away. There were problems distinguishing this activity from “get things” that
could be improved by using the new input modality. The classification improve-
ment for this activity accounts to 12.2% boosting the average F-measure from
41.7% without to 53.9% with the new sensor. Due to the low performance results
and the characteristic periodic signal shape, it would help to consider frequency
domain features, as it is often applied in related work.

The sleeping activity (an example shown in Figure 13) was classified with
an average F-measure of 83.2%, which increased to 86.9% when using the prox-
imity data. In this case, the capacitive proximity sensor is able to capture the
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Fig. 13. During the sleeping activity the data from both sensors remains constant for
large time spans. The capacitive sensor plot shows the coverage of the arm with either
cushions, blankets or the proximity to the mattress, other parts of the bed, the head
or body of the participant.

without proximity data with proximity data

a b c d e f g h i a b c d e f g h i ← classified as
8 0 0 0 0 0 0 2 1 11 0 0 2 1 0 0 0 1 a = open door
0 140 0 5 2 0 0 0 0 0 140 0 5 2 0 0 0 0 b = sitting
0 0 294 1 9 10 1 1 0 0 0 309 1 0 4 0 0 1 c = lying
1 7 1 50 17 9 1 4 1 2 6 0 67 14 9 1 2 1 d = get things
0 2 7 7 102 42 5 0 2 1 1 0 13 120 24 7 1 1 e = make sandwich
0 0 3 5 21 288 4 0 0 0 0 2 1 19 300 3 0 0 f = eating
0 5 11 1 29 40 18 0 0 0 4 4 0 26 57 16 0 0 g = drinking
2 0 0 2 0 0 0 11 0 2 0 0 0 0 0 0 14 0 h = walking
0 2 2 0 2 0 0 0 271 0 0 0 0 1 0 0 0 276 i = sleeping

Fig. 14. Activity recognition evaluation revealing the positive impact of the capacitive
proximity sensor. Here, we are comparing SVM classification presented as confusion
matrices for an exemplary user, without the proximity data on the left, and with the
proximity data on the right. Note that the reject class (background data not annotated
as an activity) is not included in the confusion matrix.

surrounding cushions and blankets, as well as the body or head of the partic-
ipant. The accelerometer data and the capacitive proximity data have larger
periods of low variance, which is a cause for confusion with the “lying on the
couch” activity.

Figure 14 depicts two confusion matrices for an exemplary participant from
our evaluation, once without and once with including the proximity data. In
most activities, an enhancement in the number of correctly classified instances
is observable. The “lying” activity’s recognition performance could benefit a lot
from the proximity data, improving both precision and recall.

A better classification performance can also be observed for the “get things”
class that includes interactions with a multitude of objects in the environment.
Regarding the activity “make sandwich”, the capacitive proximity could reduce
the number of confusions with the “eating” class significantly.

Due to the high similarity of eating and drinking (cf. Figure 10 and 11),
the number of confusions between those two classes increases when considering
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the proximity data. However, for the “drinking” class the new modality limits
the confusions to related activities such as “eating” and “make sandwich” only,
while lowering the number of false recognitions for the other activities.

5 Conclusion and Outlook

Our paper presented a wrist-worn activity data logger prototype, which consists
of an accelerometer in combination with a capacitive proximity sensor integrated
into the wristband. Our experiments with seven participants and nine daily activ-
ities show that this additional input modality can significantly boost the activity
recognition performance. Regarding the classification performance, we obtained
an improvement in the average F-measure of 6.3%, from 67.2 to 73.5%. Specif-
ically, the activity classes “walking”, “make sandwich” and “open door” could
benefit a lot from proximity-related sensor data. For such classes, the classifica-
tion performance could be boosted by 12.2%, 9.0% and 10.8% respectively.

With this proof of concept we show that the proximity information can pro-
vide an information gain regarding the evaluated activities. In future work we
aim at evaluating other relevant feature types, such as frequency domain fea-
tures, as well as feature sets to extract the most discriminative ones. Additionally,
using other classifiers (such as HMMs) might also improve activity recognition
performance.

The classification results could also be improved by using more than one
sensing electrode in the wristband. For example, the wristband could integrate
up to four electrodes that are placed on each side of the arm. However, this will
lead to smaller electrode surfaces thus resulting in a decreased sensing distance.
The sensor’s power consumption can be decreased by shorter measurement win-
dows and the choice of more energy efficient hardware components as well as
software implementation. Measuring pulse width lengths instead of counting the
number of pulses of the sensor’s signal may reduce the required time needed for
a measurement, thus increasing the time the microcontroller is able to sleep.

Capacitive proximity sensors represent a suitable new input modality for
future activity recognition systems. The low power consumption as well as the
unobtrusive integration of a sensor into the wristband meets an essential require-
ment of wearable applications. Especially in AAL environments, these systems
can help monitoring the course of chronic diseases by recognizing activities of
daily life. This may improve the quality of life of persons affected and their
caregivers.
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